Section 4.1 Antiderivatives 331

Now that we know how to find antiderivatives for a number of functions, we return to
the problem of the plummeting space shuttle that opened the section.

Finding the Position of a Falling Object Given
1ts Acceleration

If a space shuttle’s downward acceleration is given by y”(t) = —32 ft/s?, find the posi-
tion function y(z). Assume that the shuttle’s initial velocity is y'(0) = —100 ft/s, and
that its initial position is y(0) = 100,000 feet.

Solution We have to undo two derivatives, so we compute two antiderivatives.
First, we have

y@) = / Y'@)dt = f (=32)dt = 32t +c.

: Recall that y'(¢) is the velocity of the shuttle, given in units of feet per second. We can
: evaluate the constant ¢ using the given initial velocity. Since

v(t) =y () = -32t+¢
- | and v(0) = —100, we must have
—100 = v(0) = -32(0) + c =,
so that ¢ = —100. Thus, the velocity is y'(z) = —32¢ — 100. Next, we have

y(t) = / y'(t)dt = / (—32t — 100) dt = —32(3¢*) — 100t + ¢
= —16t% — 100z + c.

Recall that y(¢) gives the height of the shuttle, measured in feet. Using the initial posi-
tion, we have

100,000 = y(0) = —16(0) — 100(0) +c =c.
Thus, ¢ = 100,000 and
y(t) = —16t2 — 100t + 100,000.

Keep in mind that this models the space shuttle’s altitude assuming that the only force
acting on the shuttle is gravity (i.e., there is no air drag or lift). In this case, we have a
disastrous (and fortunately, unrealistic) outcome. (Compute the velocity of the shuttle
on landing, to see why.)

1. ... Inthe text, we emphasized that the indefinite integral rep- a(t) = s"(t) = F(t)/m. To compute s(z), you need to compute
"8 resents all antiderivatives of a given function. To under- an antiderivative of the force function F(¢)/m followed by an
stand why this is important, consider a situation where you know antiderivative of the first antiderivative. But, suppose you were

the net force, F(t), acting on an object. By Newton’s second unable to find all antiderivatives. How would you know whether

law, F = ma. For the position function s(¢), this translates to you had computed the antiderivative that corresponds to the
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position function? In physical terms, explain why it is reasonable 55 /' Bcosx — 1/x)dx 24 / (2x~! + sinx) dx
to expect that there is only one antiderivative corresponding to a )
given set of initial conditions.

4x 2x?
2. :f. . In the text, we presented a one-dimensional model of a 25 f ¥+ dx 26. / oy dx
@ space shuttle flight. We ignored some of the forces on the
shuttle so that the resulting mathematical equation would be one
that we could solve. You may wonder what the benefit of doing 27, [ (Sx - _3_) dx 28. / (2cosx — Ve¥) dx
. this is. Weigh the relative worth of having an unsolvable but real- et
istic model versus having a solution of a model that is only par-
tially accurate. Keep in mind that when you toss trash into a waste- .
basket you do not take the curvature of the earth into account. 29. _/ Ssin2x dx 30. / 4cos5x dx
3. ik Verify that [ xe* dx = Le*’ + c and [ xe* dx = xe* —
‘w €* + ¢ by computing derivatives of the proposed anti-  31. / (€* —x)dx 32. / (4sin3x — 1)dx
derivatives. Which derivative rules did you use? Why does this
make it unlikely that we will find a general product (antideriv-

ative) rule for [ f (x)g(¥) dx? 33, f 3 sec 2x tan2x dx 34, / 3sec? 3x dx
4, ik We stated in the text that we do not yet have a formula
. ‘@ for the antiderivative of several elementary functions, & cosx
. including In x, sec x and csc x. Given a function f(x), explain  35. f =13 dx 36. / prewns
* : what determines whether or not we have a simple formula for
; [ f(x)dx. For example, why is there a simple formula for 2
| [ secx tanx dx but not [ secxdx? 7. /exejsdx 18. /(L:z;"ﬁdx
; In exercises 5-40, find the general antiderivative.
: 5 /3x4 dx 6 /sz ix 39, f MM — 8)dx 40. / x¥3(x~43 — 3)dx
7 3x* —3x)d ) /' 3 _ In exercises 41-52, 6 of the 12 antiderivatives can be determined
_/ (3x x)dx 8 " =2 dx using basic algebra and the derivative formulas we have pre-
sented. Find the antiderivatives of those 6 and label the others
: “N/A.”
9. f 3J/xdx 10. f (4x — 24/x) dx
) . 41. /«/ﬂ +4dx 4. /(«/23'+4)dx
—_— =2 4 .
11. /( x‘)dx 12. /(2:: + ﬁ) dx
_ 3x2—4 x2
i 13 3 x + 2x3/4 43. / 2 dx 44, / 24 dx
13. / T dx 14, / s dx
. 45. / 2secxdx 46. f sec? x dx
15. /(2 sinx 4+ cosx) dx 16. f(3 cosx — sinx)dx ) )
. 4
17. f,zsecxmnxdx 18. f4csc2xdx | 4. f““‘"’“’" 4. fzs“‘ xdx .
2
19. / 5sec? xdx 20. f 4cscxcotx dx 49. / € dx 50. / (€)Y dx

l 21. f(3e*—2)dx zz.f(4x—2f)dx oSk f(;lz‘—l)d" | 52. /le—ldx.




53.

54.

In example 1.12, use your CAS to evaluate the antiderivatives
in parts (b) and (f). Verify that these are correct by computing
the derivatives.

For each of the six problems in exercises 41-52 that you
labeled N/A, try to find an antiderivative on your CAS. Where
possible, verify that the antiderivative is correct by computing
the derivatives.

In exercises 55-60, find the function f(x) satisfying the given

conditions.

55. flx)=4x2-1,f0)=2

56. f'(x) =4cosx, f(0) =3

57. f'x)=3€+x, f(O)=

58. f'(x)=3sin2x, f0)=1

59. f'(x)=12, f(0) =2, f(0)=3

60. f'(x)=2, f'(0)=-3, f(0O) =

In exercises 61-64, find all functions satisfying the given

conditions.

61. f"(x) = 3sinx + 4x? 62. f'(x) =./x —2cosx

63. f"(x)=4-2/x 64. f"(x)=sin2x —e*

65. Determine the position function if the velocity function is
v(t) = 3 — 12¢ and the initial position is s(0) = 3.

66. Determine the position function if the velocity function is
v(t) = 3e™ — 2 and the initial position is s(0) =

67. Determine the position function if the acceleration function is
a(t) = 3sint + 1, the initial velocity is v(0) = 0 and the initial
position is s(0) =

68. Determine the position function if the acceleration function is
a(t) = t? + 1, the initial velocity is v(0) = 4 and the initial po-
sition is s (0) =

69. Suppose that a car can accelerate from 30 mph to 50 mph in
4 seconds. Assuming a constant acceleration, find the accelera-
tion (in miles per second squared) of the car and find the dis-
tance traveled by the car during the 4 seconds.

70.  Suppose that a car can come to rest from 60 mph in 3 seconds.

Assuming a constant (negative) acceleration, find the accelera-
tion (in miles per second squared) of the car and find the dis-
tance traveled by the car during the 3 seconds (i.e., the stopping
distance).

Section 4.1 Antiderivatives 333

In exercises 71 and 72, sketch the graph of a function f(x) corre-
sponding to the given graphof y = f’'(x).

71.

72.

73.

74.

75.

76.

71.

78.

Sketch the graphs of three functions each of which has the de-
rivative sketched in exercise 71.

Repeat exercise 71 if the given graph is of f”(x).

For the shuttle in example 1.13, find the time when it reaches
the ground and its velocity at that time. Why did we say that
this would be a disastrous outcome?

Derive the formulas [sec’ x dx = tan x + c and fsecxtanx dx =
secx +c.

Derive the formulas fe*dx = €* + cand [ e *dx=—¢"* +c.

‘ Compute the derivatives of ¢®** and ¢, Given these
derivatives, evaluate the indefinite integrals
fcosxe"“‘"dx and f2.xe" dx. Next, evaluate [ xe* dx.

f xedx = f 2x e dx ) Similarly, evaluate
f J:2 dx.In general, evaluate

f f(x)ef® dx.

Next, evaluate [ e* cos(e*) dx, [ 2x cos(x?)dx and the more
general '

f f'(x)cos(f(x))dx.
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As we have stated, there is no general rule for the antiderivative
of a product, [ f(x)g(x)dx. Instead, there are many special
cases that you evaluate case by case.

’ A differential equation is an equation involving an un-
known function and one or more of its derivatives, for
instance, v'(t) = 2¢ + 3. To solve this differential equation,
you simply find the antiderivative v(f) = f(2t + 3)dt = 12 +
3t + c¢. Notice that solutions of a differential equation are func-
tions. In general, differential equations can be challenging to
solve. For example, we introduced the differential equation
mv'(t) = —mg + kv?(¢) for the vertical motion of a space
shuttle subject to gravity and air drag. Taking specific values
of m and k gives the equation v'(f) = —32 4 0.0003v2(z).
To solve this, we would need to find a function whose deriva-
tive equals —32 plus 0.0003 times the square of the function.
It is difficult to find a function whose derivative is written
in terms of [v(#)]* when v(¢) is precisely what is unknown.
We can nonetheless construct a graphical representation of the

solution using what is called a direction field. Suppose we
want to construct a solution passing through the point
(0, —100), corresponding to an initial velocity of v(0) = ~100
ft/s. At t = 0, with v = —100, we know that the slope of the
solution is v' = —32+ 0.0003(—100)? = —29. Starting at
(0, —100), sketch in a short line segment with slope —29. Such
a line segment would connect to the point (1, —129) if you ex-
tended it that far (but make yours much shorter). At ¢ = 1 and
v=  -129, the slope of the solution s
! = —32 + 0.0003(—129)* ~ —27. Sketch in a short line
segment with slope —27 starting at the point (1, —129). This
line segment points to (2, —156). At this point, v/ = —32 +
0.0003(—156)% ~ —24.7. Sketch in a short line segment with
slope —24.7 at (2, —156). Do you see a graphical solution
starting to emerge? Is the solution increasing or decreasing?
concave up or concave down? If your CAS has a direction field
capability, sketch the direction field and try to visualize the so-
Iution starting at points (0, —100), (0, 0) and (0, —300).

.

SUMS AND SIGMA NOTATION

In section 4.1, we discussed how to calculate backward from a function describing the
acceleration of an object to arrive at the function giving the position of the object at any
time, . We would now like to investigate the same process graphically. In this section, we
develop an important skill necessary for this new interpretation.

Suppose that you are cruising on a highway at 60 mph. In 2 hours, you will have trav-
eled 120 miles; in 4 hours, you will have traveled 240 miles. There’s no surprise here, but
notice that you can see this graphically by looking at several graphs of the (constant) ve-
locity function v(¢) = 60. In Figure 4.1, we have shaded in the area under the graph from
t = 0 to ¢t = 2. Notice that the area of this region equals 120, the distance covered in the

: time span from ¢ = 0 to ¢ = 2. In Figure 4.2, the shaded region from ¢ = 0 to ¢ = 4 has

| area equal to the distance of 240 miles.

' : So, it appears that the distance traveled over a particular time interval equals the area
of the region bounded by y = v(t) and the ¢-axis on the indicated time interval. For the

Velocity

Time

yv=. vu(t) on [0?2] .

y=v@onl0,2).




