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on the interval [0, 1], using # = 10. You should note that in this case (as with any increasing func.
tion), the rectangles corresponding to the right endpoint evaluation (Figure 4.13a) give too much area
on each subinterval, while the rectangles corresponding to left endpoint evaluation (Figure 4.13b)
give too little area. We leave it to you to observe that the reverse is true for a decreasing function,

Computing Riemann Sums with Different
Evaluation Points

‘ Compute Riemann sums for f(x) = +/x + 1 on the interval [1, 3], for n = 10, 50, 100,
| 500, 1000 and 5000, using the left endpoint, right endpoint and midpoint of each sub-
interval as the evaluation points.

Solution The numbers given in the following table are from a program written for
a programmable calculator. We suggest that you test your own program or one built into
your CAS against these values (rounded off to six digits).

| 10 338879 3.44789 3.50595
| 50 3.43598 3.44772 3.45942
, 100 3.44185 344772 3.45357
| 500 | 344654 3.44772 3.44388
1000 3.44713 344772 3.44830 .
5000 | 3.44760 3.44772 3.44783 . ’i

There are several conclusions to be drawn from these numbers. First, there is good
evidence that all three sets of numbers are converging to a common limit of approxi-
mately 3.4477. You should notice that the limit is independent of the particular evalua-
tion point used. Second, even though the limits are the same, the different rules ap-
proach the limit at different rates. You should try computing left and right endpoint sums
for larger values of 7, to see that these eventually approach 3.44772, also.

Riemann sums using midpoint evaluation usually approach the limit far faster than left
or right endpoint rules. If you think about the rectangles being drawn, you may be able to
explain why. Finally, notice that the left and right endpoint sums in example 3.5 approach
the limit from opposite directions and at about the same rate. We take advantage of this in
an approximation technique called the Trapezoidal Rule, to be discussed in section 4.7. If
your CAS or graphics calculator does not have a command for calculating Riemann sums,
we suggest that you write a program for computing them yourself,

o L g .. It turns out that for many functions, the limit of the Jf(x). As the number of partition points gets larger, the distance
oy “@F Riemann sums is independent of the choice of evaluation between the endpoints gets smaller. For the continuous function -
i points. Discuss why this is a somewhat sirprising result. To f(x), explain why the difference between the function values at

make the result more believable, consider a continuous function any two points in a given subinterval will have to get smaller.
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2. ... Rectangles are not the only basic geometric shapes for In exercises 27-30, construct a table of Riemann sums as in

'@ which we have an area formula. Discuss how you might Example 3.5 to show that sums with right-endpoint, midpoint and

approximate the area under a parabola using circles or trian- left-endpoint evaluation all converge to the same valueasn - co.
gles. Which geometric shape do you think is the easiest to use? '

27, fx) =4 —-x2%,[-2,2] 28. f(x) =sinx, [0, 7/2]
In exercises 310, list the evaluation points corresponding to the , ,
midpoint of each subinterval, sketch the function and approxi- 29 f(x)=x"-LIl, 3] 3. f () =x" - L[-11]

mating rectangles and evaluate the Riemann sum.
In exercises 31-34, use Riemann sums and a limit to compute the

3. f@)=x*+1[0,1,n=4 exact area under the curve.
] 4 fx)=x*+1,[0,2l,n=4 3. y=x*+2o0nl0,1]} 32. y=x*+3xon[0,1]
“' 5. f@)=x'—1,[1,2,n=4 33, y=2x*+1on(l,3] 34, y=4x+2on[l1,3]
] 6. f&)=x*-1,[1,3Ln=4 In exercises 3540, use the given function values to estimate the
. ) area under the curve using left-endpoint and right-endpoint
7. f(x)=sinx,[0,7],n =4 evaluation.
8. f(x)=sinx, [0,7],n =8 35
I 00{01/02(03[{04]05]06]0708
] 9. fx)=4-x%{-1,1,n=4
f(x120]24|26(27|2624{20)14)06
10. f(x)=4~x%[-3,-1,n=4
In exercises 11-26, approximate the area under the curve on the 36. x 00{01(02(03]04(0S5 06107108
interval usin; rectan; d the indicated evaluati
ivl:“ Tval heing » gles and the indicated evaluation fo130[22|16]07 0604 -02]04]06
11. y = x?onf{0, 1], n = 8, midpoint evaluation 37
- I 00/0204(06108[10]12]14]16
12. y =x?on[0, 1], n = 8, right-endpoint evaluati - '
y=x"on0,1], n =8, right-endpoint evaluation fo 10|14 2127 ]26]28]3034 |36
13. y =x2on[-1,1], n = 8, left-endpoint evaluation
14. y =x?on[~1, 1], n = 8, midpoint evaluation 38. x 00{02(04106(08]10|12|14]16
15. y= mon [1’ 4], n=8, mldpomt evaluation f(x) 20122116}114]116]20]22(24}20
16. y =+/x+2on[l1,4],n =8, right-endpoint evaluation 39
. B 10]1.1112(13}14]15|16|17 ;18
t ] 17. y =e % on[-1, 1], n = 16, left-endpoint evaluation
, f) 18| 14| 11[07]12[14]18}24]26
. 18. y=e"2 on[-1, 1], n = 16, midpoint evaluation
" 19. y =cosx on [0, /2], n = 50, midpoint evaluation -1 l10]12]14|16]18]20]22(24]26
20. y=cosx on [0, /2], n = 100, right-endpoint evaluation fx) 00} 0406|0812 14]12]14]10

21. y=3x-2on(l,4],n = 4, midpoint evaluation
: In exercises 41~44, graphically determine whether a Riemann

22. y=13x—2on[l, 4], n = 40, midpoint evaluation sum with (a) left-endpoint, (b) midpoint and (c) right-endpoint
: : evaluation points will be greater than or less than the area under
i 23, y =x?—1on[l, 3], n = 100, midpoint evaluation , the curve y = f(x) on[a, b].

24, y =x3—1o0n[l,3],n = 100, right-endpoint evaluation 41. f(x) is increasing and concave up on [a, b].
1 _ ‘ 25. y=x?-1on[-1,1], n = 100, left-endpoint evaluation 42. f(x) is increasing and concave down on [a, b].

26. y =x3—1on[-1,1], n = 100, right-endpoint evaluation 43. f(x) is decreasing and concave up on [a, b].
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f(x) is decreasing and concave down on [a, b].

For the function f(x) = x? on the interval [0, 1], by trial and
error find evaluation points for n = 2 such that the Riemann
sum equals the exact area of 1/3.

For the function f(x) = 4/x on the interval [0, 1], by trial and
error find evaluation points for n = 2 such that the Riemann
sum equals the exact area of 2/3.

Show that for right-endpoint evaluation on the interval [a, b]
with each subinterval of length Ax = (b — a)/n, the evalua-
tion points are ¢; = a +iAx,fori =1,2,...,n.

Show that for left-endpoint evaluation on the interval [a, b]
with each subinterval of length Ax = (b — a)/n, the evalua-
tion points are ¢; =a + (i — 1) Ax,fori =1,2,...,n.

As in exercises 47 and 48, find a formula for the evaluation
points for midpoint evaluation.

As in exercises 47 and 48, find a formula for evaluation points
that are one-third of the way from the left-endpoint to the right-
endpoint.

‘ Riemann sums can also be defined on irregular parti-
tions for which subintervals are not of equal size. An
example of an irregular partition of the interval [0, 11is xp = 0,
x =0.2,x; = 0.6, x3 = 0.9, x4 = 1. Explain why the corre-
sponding Riemann sum would be '

F(€1)(0.2) + f(c2)(0.4) + f(¢3)(0.3) + f(ca)(0.1),

for evaluation points ¢y, ¢z, ¢3 and c4. Identify the interval from
which each ¢; must be chosen and give examples of evalua-

52.

tion points. To see why irregular partitions might be useful,

. . 2x ifx <1
consider the function f(x) = [ 241 ifx>1
[0, 2]. One way to approximate the area under the graph of
this function is to compute Riemann sums using midpoint
evaluation for n =10, n =50, n = 100 and so on. Show
graphically and numerically that with midpoint evaluation, the
Riemann sum with n = 2 gives the correct area on the subin-
terval [0, 1]. Then explain why it would be wasteful to com-
pute Riemann sums on this subinterval for larger and larger
values of n. A more efficient strategy would be to compute the
areas on [0, 1] and [1, 2] separately and add them together,
The area on [0, 1] can be computed exactly using a small
value of n, while the area on [i,2] must be approximated
using larger and larger values of n. Use this technique to esti-
mate the area for f(x) on the interval [0, 2]. Try to determine
the area to within an error of 0.01 (discuss why you believe
your answer is this accurate).

on the interval

‘ Graph the function f(x) = e*. You *may recognize
this curve as the so-called “bell curve,” which is of
fundamental importance in statistics. We define the area func-
tion g(r) to be the area between this graph and the x-axis
between x = 0 and x = ¢ (for now, assume that ¢ > 0). Sketch
the area that defines g(1) and g(2) and argue that g(2) > g(1).
Explain why the function g(x) is increasing and hence
g'(x) > 0 for x > 0. Further, argue that g'(2) < g'(1). Explain
why g’(x) is a decreasing function. Thus, g’(x) has the same
general properties (positive, decreasing) that f(x) does. In fact,
we will discover in section 4.5 that g’(x) = f(x). To collect
some evidence for this result, use Riemann sums to estimate
g(2), g(1.1), g(1.01) and g(1). Use these values to estimate

g'(1) and compare to f(1).

IEX3 THE DEFINITE INTEGRAL

Throughout this chapter, we have been considering the problem of computing distance
from a given velocity function. For instance, suppose that a sky diver starts her jump by
stepping out of an airplane (so that she starts with zero downward velocity). The jumper
gradually picks up speed until a maximum speed is reached. Such a terminal velocity is the
speed at which the force due to air resistance cancels out the force due to gravity. A func-
tion that has these properties is f(x) = 30(1 — e~*/3) (see Figure 4.14a), which we can
think of as modeling the (downward) velocity x seconds into the jump. .

As we discussed in section 4.2, the area under this curve on the interval 0 < x <t
corresponds to the distance fallen in the first £ seconds. On a given interval (i.e., for a given
value of ), we can approximate this area by first partitioning the interval into n subintervals
[x-1,x1,i=1,2,...,n, of equal width, Ax. On each subinterval, we construct a rectan-
gle of height f(c;), for any choice of ¢; € [x;—_1, xi] (see Figure 4.14b). Finally, summing
the areas of the rectangles gives us an approximation to the area,

EERS ‘ Azzn:f(ci)Ax.
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