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x € [a, b], then inequality (4.4) holds:
b
mpb—a) < / fx)dx < M(b — a).

Along with its role in the proof of the Integral Mean Value Theorem, this has some
additional significance, in that it enables us to estimate the value of a definite integral.
Although the estimate is generally only a rough one, it still has importance in that it gives
us an interval in which the value must lie. We illustrate this in the following example.

Estimating the Value of an Integral
Use inequality (4.4) to estimate the value of fo +/x2 4 1dx.

Solution First, notice that it’s beyond your present abilities to compute the value
of this integral exactly. However, notice that

1 </xZ+1 <42, forallx €0, 1].

3 From inequality (4.4), we now have
E . 1
1< f Vx2 +1dx < /2 ~ 1.414214,
‘ 0

,g ‘ In other words, although we still do not know the exact value of the integral, we know
: that it must be between 1 and +/2 ~ 1.414214.

-

I :p. Sketch a graph of a function f that is both positive and Theorem for derivatives (see section 2.9). If the c-values iden-
‘& pegative on an mterval [a, b). Explain in terms of area tified by each theorem are the same, what does [ f'(x)dx
what it means to have f f(x)dx = 0. Also, explain what it have to equal? Explain why, at this point, we don’t know
means to have f fx)dx =0 and f f(x)dx <0. whether or not the c-values are the same.
In exercises 5-10, use Riemann sums to estimate the value of the
2. ... To get a physical interpretation of the result in Theo-  jntegral (obtain two digits of accuracy).
“@’ rem 4.3, suppose that f(x) and g(x) are velocity func-
tions for two different objects starting at the samebposition If s, /‘3 & +x)dx 6. /'2 G — 1) dx
f (x) = g(x) > 0, explain why it follows that [’ f(x)dx > 0 1

f g(x)dx. 41 3
7. f—dx 8. /\/x2+1dx
0

3. ... The Integral Mean Value Theorem says that if fx) is ,
f ' continuous on the interval [a, b], then there exists a 9. / 24 10 / “x?
number ¢ between g and b such that f(c)(b —a) = f: fx)dx. sinx”dx ’ € *
By thinking of the left-hand side of this equation as the area of
a rectangle, sketch a picture that illustrates this result, and ex- In exercises 11-16, evaluate the integral by computing the limit
plain why the result follows. of Riemann sums.

é;w Write out the Integral Mean Value Theorem as applied ¢ / ' 2xdx 12, / 2 2% dx
to the derivative f’(x). Then write out the Mean Value 0 1

uuuuu
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2 3 . . .
13. / xdx 14, f (2 + 1) dx In exercises 35-38, sketch the area corresponding to the integra)
0 0 2 4
2 _ 2
\ ) 35. /: (x* —x)dx 36. j; (x* —x)dx
15. f (2x - 1)dx 16. f (x? — 1)ydx
1 -2 /2 2
37. / cosxdx 38. / e *dx
In exercises 17-26, write the given (total) area as an integral or 0 -2
sum of integrals. :
In exercises 39-42, use the Integral Mean Value Theorem to esti.
17. The area above the x-axis and below y = 4 — x? mate the value of the integral.
. 2 /2 1/2
18. The area above the x-axis and below y = 4x — x 39, / 3 cosx? dx 40. f e—* dx
n/3 0

19. The area below the x-axis and above y = x2 — 4 _

2 1
41. f V2x2 4 1dx 42, / —3—-dx
() -

20. The area below the x-axis and above y = x? — 4x 1 X242
21. The areaof the region bounded by y = x2, x = 2and the x-axis  In exercises 43 and 44, find a value of ¢ that satisfies the conclu-

sion of the Integral Mean Value Theorem.
22. The area of the region bounded by y = x3, x = 3 and the x-axis

2 1
2. 2 _ gy —2
23. The area between y = sinx and the x-axis for 0 <x < 43. /0‘ 3x%dx(=8) 44. [-1 (* —22) dx (=)

24. The area between y =sin x and the x-axis for —m/2 < 45. Substitute f(x) = g'(x) in the conclusion of the Integral Mean
x<=m/4 Value Theorem. Discuss how the result compares with the
Mean Value Theorem of section 2.9.
25. The area between y = x> —3x?+2x and the x-axis for

0<x<2 46. Prove that if f is continuous on the interval [a, b], then there
' exists a number c in (a, ) such that f(c) equals the average
26. "The area between y = x> — 4x and the x-axis for —2 < x <3 value of f on the interval [a, b].
In exercises 27-30, use the given velocity function and initial po-  47. Prove part (iv) of Theorem 4.2 -for the special case |
sition to estimate the final position s (b). c=j(a+b).
27. v(t)=60—-16t,5(00)=2,b=2 48. Show that parts (i)~(iii) of Theorem 4.2 must follow if it is true
that

28. v(t)=20+10t,58(1)=3,b=3 b b b
f fcf (x) +dg(x)]1dx = C/ fx)dx +d/ g(x)dx.

29, v(t) =401 —e*),5(0) =0,b=4 Z
(Hint: Make clever choices of ¢ and 4, like d =0 or c = j

30. v(t) =304 5(0)=~-1,b=4 d=1) 1
In exercises 31-34, use Theorem 4.2 to write the expression as a In exercises 49-52, use the graph to determine whether f: Jx)dx
single integral. is positive or negative.
2 3 49, y ]
- 31, / f(x)dx +/ fx)dx
0 2 3
3 3
32. f f(x)dx—f fx)dx 2
0 2
1

2 1
33. f fx) dx+f f(x)dx
Jo 2

2 3. -1
4. 1
3 /_ 1 fx)dx+ fz fx)dx ::
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2x ifx <1
x24+2 ifx>1

assume that f,,2 f(x)dx and

For the functions f(x) = [ and

) = 2x ifx<1
EX=1x242 ifx> 1

f2 g(x)dx exist. Explain why the approximating Riemann

sums with midpoint evaluations are equal for any even value of

n. Argue that this result implies that the two integrals are equal.

For the functions defined in exercise 53, explam why the inte-
gralsarebothequaltothe sumf0 2xdx +f1 *? +2) dx.

In exercises 5558, compute fo f(x)dx.

S5.

56.

2x ifx<1
f(")={4 ifx>1
2 ifx<2
f(x)={3x ifx>2

57.

58.

39.

61.

62.
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ifx <3

f& = [x+1 if x > 3
x—1 ifx<l1
f(")‘{z ifx > 1

Suppose that, for a particular population of organisms, the birth
rate is given by b(#) = 410 — 0.3¢ organisms per month and
the death rate is given by a(t) = 390 + 0.2t organisms per
month. Explain why fo [b(t) — a(t))dt represents the net
change in population in the first 12 months. Determine for
which values of ¢ it is true that b(t) > a(r). At which times is
the population increasing? decreasing? Determine the time at
which the population reaches a maximum.

Suppose that, for a particular population of organisms, the birth
rate is given by b(¢) = 400 — 3sin¢ organisms per month and
the death rate is given by a(t) = 390+ 0.2¢ organisms per
month. Explain why f [b(t) — a(t)]dt represents the net
change in population in the first 12 months. Graphically deter-
mine for which values of ¢ it is true that b(¢) > a(¢). At which
times is the population increasing? decreasing? Estimate the
time at which the population reaches a maximum.

For a particular ideal gas at constant temperature, pressure P
and volume V are related by PV = 10. The work required to
increase the volume from V = 2 to V = 4 is given by the inte-
gral [;' P(V)dV. Estimate the value of this integral.

Suppose that the temperature ¢ months into the year is given
by T(t) = 64 — 24 cos £t (degrees Fahrenheit). Estimate the
average temperature over an entire year. Explain why this
answer is obvious from the graph of T'(¢).

In exercises 63—68, estimate the average value of the function on

the given interval.
63. f(x)=2x+1,[0,4] 64. f(x)=x2+2x,10,1]
65. f(x)=x%-1,[1,3] 66. f(x)=2x—2x2,[0,1}

67.
69.

70.

f(x) =cosx, [0, /2] 68. f(x)=sinx,[0, %/2]

The impulse-momentum equation states the relationship be-
tween a force F(¢) applied to an object of mass m and the
resulting change in velocity Av of the object. The equation is
mAv.= f F(t)dt, where Av = v(b) — v(a). Suppose that
the force of a baseball bat on a ball is approximately F(t) =

—10°%(t —0.0003)? thousand pounds for ¢ between 0 and

: 0 0006 seconds. What is the maximum force on the ball? Using

m = 0.01 for the mass of a baseball, estimate the change in
velocity Av (in ft/s).

Measurements taken of the feet of badminton players lunging
for a shot indicate a vertical force of approximately F(z) =
1000 — 25,000(z — 0.2)? Newtons for ¢ between 0 and 0.4 sec-

onds (see The Science of Racquet Sports). For a player of mass
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71.

72.

73.
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m =5, use the impulse-momentum equation in exercise 69 to
estimate the change in vertical velocity of the player.

Use the Integral Mean Value Theorem to prove the following
fact for a continuous function. If the evaluation point is chosen
properly, the Riemann sum approximation of j;b f(x)dx with
n = 1 can be made to be exact.

Use the Integral Mean Value Theorem to prove the following
fact for a continuous function. For any positive integer n, there
exists a set of evaluation points for which the Riemann sum
approximation of f: f(x)dx is exact.

’ Many of the basic quantities used by epidemiologists to
study the spread of disease are described by integrals.
In the case of AIDS, a person becomes infected with the HIV
virus and, after an incubation period, develops AIDS. Our goal
is to derive a formula for the number of AIDS cases given the
HIV infection rate g(#) and the incubation distribution F(t).

To take a simple case, suppose that the infection rate the
first month is 20 people per month, the infection rate the sec.
ond month is 30 people per month and the infection rate the
third month is 25 people per month. Then g(1) = 20, g(2) =~
30 and g(3) = 25. Also, suppose that 20% of those infected de.
velop AIDS after 1 month, 50% develop AIDS after 2 monthg
and 30% develop AIDS after 3 months (fortunately, these
figures are not at all realistic). Then F(1) =0.2, F(2) =05
and F(3) =0.3. Explain why the number of people deve]-
oping AIDS in the fourth month would be g(1)F(3)+
g2 F(2) + g(3)F(1). Compute this number. Next, suppose
that g(0.5) = 16, g(1) =20, g(1.5) = 26, g(2) =30, g(2.5) =
28, g(3) = 25 and g(3.5) = 22. Further, suppose that F(0.5) =
0.1, F1)=0.1, F(1.5 =02, F2)=03, FQ2.5)=0.,
F(3)=0.1 and F(3.5) = 0.1. Compute the number of people
developing AIDS in the fourth month. If we have g(¢) and F(¢)
defined at all real numbers ¢, explain why the number of people
developing AIDS in the fourth month equals f; g(f) F(4 — 1) dt.

THE FUNDAMENTAL THEOREM OF CALCULUS

In this section, we present a pair of results known collectively as the Fundamental Theorem
of Calculus. What could these results be to make them fundamental to calculus? On a
practical level, the Fundamental Theorem provides us with a much-needed shortcut for
computing definite integrals. Just as the power rule and other basic differentiation formu-
- las relieved us of the burden of using the limit definition of the derivative, the Fundamen-
tal Theorem gives us a powerful tool for computing integrals symbolically without strug-
gling to find limits of Riemann sums. Given that we can presently compute such limits
exactly only for a very small number of functions, this theorem takes on even greater sig-

nificance.

On a conceptual level, the Fundamental Theorem unifies the seemingly disconnected
studies of derivatives and definite integrals. In the rush of learning the rules for computing
derivatives and definite integrals, there is barely time to wonder why these concepts are in
the same course. The Fundamental Theorem shows us that differentiation and integration
are, in fact, inverse processes. In this sense, the theorem is truly fundamental to calculus

as a coherent discipline.

'We have dropped a few hints as to the nature of the first part of the Fundamental The-
orem. First, recall that we used suspiciously similar notations for indefinite and definite

integrals. We have also used both antidifferentiation and area calculations to compute dis-
tance from velocity. However, the Fundamental Theorem makes much stronger statements

about the relationship between differentiation and integration.




