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s In the following example, we use Part II of the Fundamental Theorem to determine

~ information about a seemingly very complicated function. Notice that although we don’t
know how to evaluate the integral, we can use the Fundamental Theorem to obtain some
important information about the function.

Finding a Tangent Line for a Function Defined
as an Integral

For the function F(x) = f: ' In(¢® + 4) dt, find an equation of the tangent line at x = 2.

Solution Notice that there are almost no function values that we can compute
exactly, yet we can easily find an equation of a tangent line! From Part II of the Funda-
mental Theorem and the chain rule, we get the derivative

F'(x) = In[(x?)* +4] %(xz) = In[(x2)? + 4](2x).

So, the slope at x = 2 is F'(2) = In(68)(4) = 16.878. The tangent passes through the
point x =2 and y = F(2) = f: In(t3 4+ 4) dt = O (since the upper limit equals the
lower limit). An equation of the tangent line is then

y =4In68(x —2).

At the beginning of this section, we briefly discussed the theoretical importance of the
Fundamental Theorem in unifying the differential and integral calculus. Both parts of the
theorem involve both derivatives and integrals and this connection is certainly important.
Now that we’ve discussed the computational significance of the results, we want to close
the section by observing that the two parts of the Fundamental Theorem are different sides
of the same theoretical coin. In Part I, we observe that if we can find an antiderivative for
the function in the integrand, then we can easily evaluate the definite integral. In Part IT, we
observe that every continuous function has an antiderivative, in the form of a definite inte-
gral with a variable limit of integration.

Recall the conclusions of Parts I and IT of the Fundamental Theorem:

b
f F'(x)dx = F(b) — F(a)

a
and

d [*
2;_/; f®)yde = f(x).

In both cases, we are saying that differentiation and integration are in some sense inverse op-
erations: their effects in a certain sense (with appropriate hypotheses) cancel each other out.

J° cally, first suppose that F(x) is increasing on the inter- be negative.
val [a, b]. Explain why both of the expressions F(b) — F(a)
and j;" F'(x)dx will be positive. Further, explain why the 2. ap.
faster F(x) increases, the larger each expression will be. Simi- "%’ terms of position s(¢) and velocity v(t) = s'(¢). Start

L. & To explore Part I of the Fundamental Theorem graphi- larly, explain why if F(x) is decreasing both expressions will

_ You can think of Part I of the Fundamental Theorem in
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by assuming that v(#) > 0. Explain why ﬁ’ v(t)dt gives
the total distance traveled and explain why this equals
s(b) — s(a). Discuss what changes if v(¢) < 0.

-f.. . To explore Part II of the Fundamental Theorem graphi-
‘ & cally, consider the function g(x) = [ f(t) dt. If £(t) is
positive on the interval [a, b], explain why g’(x) will also be
positive. Further, the larger f(¢) is, the larger g’(x) will be.
Similarly, explain why if f(¢) is negative then g'(x) will also
be negative.

4. In Part T of the Fundamental Theorem, F can be any
v‘ antiderivative of f. Recall that any two antiderivatives
of f differ by a constant. Explain why F(b) — F(a) is well-
defined; that is, if F; and F, are different antiderivatives,
explain why F,(b) — F;(a) = F,(b) — F;(a). When evaluat-
ing a definite integral, explain why you do not need to include
“+4¢” with the antiderivative.

In exercises 5-30, use Part I of the Fundamental Theorem to
compute each integral exactly.

5.

7.

9.

ll..
13.
15.
17.
19.
21.
23,

25.

2 3
f (2x —3)dx 6. / (x% —2)dx
0 0
1 2
f (* +2x) dx 8. f @ +3x—1)dx
-1 0
4 2
f (v + 3x)dx 10. f (4x — 2/x*)dx
A o _ f .

1 8
f xv/x +x" Y% dx 12. f @fx - x¥3)dx
0 o

/2 0
/ 2sinxdx 14. / 4cosxdx
0 -
n/4 n/4
/ secx tanx dx 16. / sec? x dx
0 0
n n
/ (2sinx — cosx)dx 18. f 3sin2xdx
/2 0
1 Sl
/ (e —eF)dx 20. f (e +e*)dx
[ . -1
3 2
f 3 —x%)dx 22 / 3x — e *)dx
0 0
1 1 2%
/ (€ +e ") dx 24, / e -1 dx
-1 0 ex
4y _3 2.2 _
/ P 26. / it AL PN
1 x 1 X

4 x/3 3 %’
27. / x(x —2)dx 28. f 3 dx i
0 o cos“ x
3 0
29. / (x* —sinx)dx 30. f (2x + €*)dx
0 -2

In exercises 31-40, use the Fundamental Theorem if possible or es-
timate the integral using Riemann sums. (Hint: Six problems can
be worked using antiderivative formulas we have covered so far,)

2 2
31. /Jx2+1dx 32. f(«/5+1)2dx
0 0

1 1
33. f (¢ + 1)%dx 34, f &+ dx
0 0
4 x2 4 x2+4
35. _/1 mdx 36. /; xz dx
37. / sinx? dx 38. / sin2x dx
(1} 0
x/4 o w/4
3. f X dx 0. f B0 ix
o cos?x o secx

In exercises 41-46, find the derivative f’(x).

41, f(x)=fx(t2—3t+2)dt
1]
42, f(x)=/x(t2—3t—4)dt
2
xz xz
= — = ’2—
43. f(x) /; (e +1)dt 44 f) fz (¢ —1)dt

-1 2
45. f(x)= / In¢2+1)dr 46, f(x)= f sect dt

In exercises 47-54, find the given area.
47. The area above the x-axis and below y = 4 — x2
48. The area above the x-axis and below y = 4x — x?

49. The area below the x-axis and above y = x2 — 4

50. The area below the x-axis and above y = x2 — 4x

51. The area of the region bounded by y = x2, x = 2 and the x-axis
52. The area of the region bounded by y = x3, x = 3 and the x-axis
53. The area between y = sinx and the x-axisfor0 <x <

54. The area between y = sinx and the x-axis for —7/2 <x <n/4




In exercises 55-58, find an equation of the tangent line at the
given value of x.

55. ¥y= ' sinyt2+n2dt,x =0

0

56. y=/. In(e® +2t +2)dt, x = —1
-1

X
5.y =/ cos(mtd)dt, x =2
2

58. y=/ e ldt, x =0
0

59. Use the derivative in exercise 41 to locate and identify all local
extrema of f(x) = fj (t* — 3t +2)ds.

60. Katie drives a car at speed f(t) = 55+ 10cos ¢ mph and
Michael drives a car at speed g(t) = 50 + 2t mph at time ¢
minutes. Suppose that Katie and Michael are at the same loca-
tion at time ¢ = 0. Compute [;[f(t) — g(t)1dr and interpret
the integral in terms of a race between Katie and Michael.

In exercises 61 and 62, (a) explain how you know the proposed
integral value is wrong and (b) find all mistakes.

x=1

=-1-()=-2

x=x

62. f sec? x dx = tanx =tanw —tan0 =0
0

x=0

In exercises 63-70, find the position function s (¢) from the given
velocity or acceleration function and initial value(s). Assume that
units are feet and seconds. ’

63. v(t) =40 —sint, s(0) =2

64. v(t) =30+4cos3t,5(0)=0

65. v(t) =25(1 —e~¥),5(0)=0

66. v(t) =10e*,s(0) =2

67. .a(t)=4—1,v(0)=28,50)=0

68. a(f) =16 —¢2, v(0) = 0,s(0) = 30

69. a(t) =24+, v(0)=0,50)=0

70. a(t) =3e~%,v(0) = —4,5(0) =0

71. If 6(z) is the angle between the path of a moving object and a
fixed ray (see the figure in the next column), the angular
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velocity of the object is w(z) = 8'(¢) and the angular acceler-
ation of the object is a(?) = &/(t).

Position at
time ¢

Suppose a baseball batter swings with a constant angular accel-
eration of a(#) = 10 rad/s?. If the batter hits the ball 0.8 s later,
what is the angular velocity? The (linear) speed of the part of
the bat located 3 feet from the pivot point (the batter’s body) is
v = 3w. How fast is this part of the bat moving at the moment
of contact? Through what angle was the bat rotated during the
swing?

72. Suppose a golfer rotates a golf club through an angle of 37/2
with a constant angular acceleration of & rad/s?. If the clubhead
is located 4 feet from the pivot point (the golfer’s body), the
(linear) speed of the clubhead is v = 4w. Find the value of
that will produce a clubhead speed of 100 mph at impact.

73. From 1970 to 1974, the function 16.1e%%"" closely approxi-
mated the number of millions of barrels of oil consumed per
year in the United States, where ¢ = 0 corresponds to 1970.
When prices rose in 1974, the consumption rate was approxi-
mated by the function 21.3¢%¢-4)_ Show that both functions
give (approximately) the same consumption rate for 1974.
Compute [;°16.16%" dt and f°21.3¢°%¢~9 dt and com-
pute the amount of oil saved by the reduced consumption. '

74. The amount of work done by a force F(x) moving an object
from x = a tox = b is givenby [’ F(x) dx. As the object con-
tinues to move, the endpoint changes in time. Then b = b(t)
and the work done is a function of time. The derivative of this
function defines power. Show that the power £ [* F(x) dx
equals F(b(t)) b'(t).

In exercises 75 and 76, use the result of exercise 74 to compute
the horsepower in the following situations.

(Note: 1 hp = 550 ft-Ib/s.)

75.  F(x) = 10001b, &' (z) = 130 ft/s

76. F(x) = 1000e~*1b,b'(t) = 100 — ¢t ft/s

In exercises 77-82, find the average value of the function on the
given interval. '

77. f(x)=x*-1,(1,3]

78. f(x) ==x%+2x,[0,1]
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79. f(x)=2x—2x%[0,1]

80. f(x)=x>—3x2+2x,[1,2]
81. f(x) = cosx, [0,7/2]

82. f(x)=sinx, [0, 7/2]

; In exercises 83 and 84, use the graph to list fol f(x)dx, f: fx)dx
and [’ f(x)dx in order, from smallest to largest.

83. y

84. y

8s.

86.

87.

Derive Leibniz’ Rule:
4 59 f(iyde = F BN ~ F@@E),

’ Suppose that a communicable disease has an infection
stage and an incubation stage (like HIV and AIDS),
Assume that the infection rate is a constant f(f) = 100 people
per month and the incubation distribution is b(f) = gigte™"/%
month~!. The rate at which people develop the disease at time
t=T is given by r(T) = fy f(®)b(T —t)dt people per
month. Use your CAS to find expressions for both the rate r(T)
and the number of people p(x) = f; r(T') dT who develop the
disease between times t = 0 and ¢ = x. Explain why the graph
y = r(T) has a horizontal asymptote. For small x’s, the graph
of y = p(x) is concave up; explain what happens for large x’s,
Repeat this for £(r) = 100 + 10sin¢, where the infection rate
oscillates up and down.

’ When solving differential equations of the form 2 =
f(y) for the unknown function y(¢), it is often conve-
nient to make use of a potential function V (y). This is a func-
tion such that —4%- = f(y). For the function f(y) =y ~’,
find a potential function V (y). Find the locations of the local
minima of V(y) and use a graph of V(y) to explain why this
is called a “double-well” potential. Explain each step in the
calculation

=5 - TOro=o

Since £ < 0, does the function V increase or decrease as time
goes on? Use your graph of V to predict the possible values of
‘1_1510 y(t). Thus, you can predict the limiting value of the
solution of the differential equation without ever solving the
equation itself. Use this technique to predict llilg yp)ify =
2-—2y. -

. |

X3 INTEGRATION BY SUBSTITUTION

The Fundamental Theorem of Calculus gives us a powerful tool for evaluating definite
integrals. The only problem is that to use it, we first need to find 4n antiderivative. Our goal
in this section is to expand our ability to compute antiderivatives, through a useful
technique called integration by substitution. As you have already seen, you need the

derivative.

chain rule to compute the derivatives of many functions. Integration by substitution gives
us a process for helping to recognize when an integrand is the result of a chain rule




