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We now have
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Notice that because we changed the limits of integration to match the new variable,
we did not need to convert back to the original variable at the conclusion of the prob-
lem, as we do when we make a substitution in an indefinite integral. (Indeed, if we had
switched the variables back, we would also have needed to switch the limits of integra-
tion back to their original values before evaluating!)

CAUTION

There is another way of dealing with definite integrals that may have occurred to you.
2 You could always make a substitution to find an antiderivative and then return to the orig-
! inal variable to do the evaluation. Although this method will work for most of the problems
4 you will encounter in this text, we recommend that you avoid it, for several reasons. First,
2 . changing the limits of integration is not very difficult and results in a much more readable
[ mathematical expression. Second, in many applications of requiring substitution, you will
| need to change the limits of integration, so you might as well get used to doing so now.

Substitution in a Definite Integral
Involving an Exponential

Compute fol 3 te~12 4t

Solution As always, we look for terms that are derivatives of other terms. Here,
you should notice that 4 (=) = —z. So, we set u = —£ and compute du = —tdt.

For the upper limit of integration, we have that ¢ = 15 corresponds to u = —%ﬁ =
—%. For the lower limit, we have that ¢ = 0 corresponds to # = 0. This gives us
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L e It is never wrong to make a substitution in an integral, but the new integral is no easier than the original integral. In
“&F but sometimes it is not very helpful. For example, using this case, a better substitution makes this workable. (Can you
the substitution u = x2, you can correctly conclude that find it?) However, the general problem remains of how you can
tell whether or not to give up on a substitution. Give some
/ X3 m_l dx = / 1 uvu + 1du, guidc?lines for answer.ing this ql_lestion,. using the integrals
2 [ xsinx?dx and [ x sinx® dx as illustrative examples.
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2. . It is not uncommon for students learning substitution to 15 / sinx d / .3
" use incorrect notation in the intermediate steps. Be ) /cosx * 16. sin”x cosx dx
aware of this—it can be harmful to your grade! Carefully ex-
am'ine the folzlowing string of equalities and find each mistake. 7. / x2 cos x dx 18. j sec? x cos(tanx) dx
Using u = x*, ‘
2 2 2
'/; xsinx”dx = /0. (sinu)xdx = /; (sin u)i du 19. / sinx(cosx + 3)**dx 20. /x cscx? cotx?dx
= 1c:osuz-- 1cosx22 :
T2y 2 0 21. / xedx 22. / & e +4 dx
1
=—ECOS4+1. 23 e\/; d 1
. 24. —_ 4
| . . f Jx / @+ ,
The final answer is correct, but because of several errors, this :
work would not earn full credit. Discuss each error and write ¥ x+1
is i i 25. —d. . e
this in a way that would earn full credit. / Ny x 26 T p—cy dx
3. iR, Suppose that an integrand has a term of the form e/, (nx +2) Jinx
@ For example, suppose you are trying to evaluate 27. Ea— dx 28. dx
f x2¢* dx. Discuss why you should immediately try the sub-
stitution u = f(x). If this substitution does not work, what 2 +1 cos x
uld you try next? (Hint: Think about [ x2e'** dx.) 29. f —_—dx 30. / —dx
co x24+x-1 sinx +2
4. .- Suppose thatan integrand has a composite function of the x
" form f(g(x)). Explain why you should look to seeif the ~ 31. / =5 4x 32. / -5 dx
mtegrand also has the term g’ (x). Discuss possible substitutions. VEWE+D) *+4
In exercises 5-8, use the given substitution to evaluate the indi- 33. [ cosxe™* dx 34. / _ tan2x dx
cated integral. _
. < TS 2 an? 3
/‘ 2V 2dx,u = +2 35. /smx(cosx 1)°dx 36. /x sec” x° dx
4 sin J_
37. —_——d 8.
6. fx’(x4+1)'2/3 dx,u=x*+1 fx(lnx+l)2 x 3 Jx
& —e* 6x
2)3 39. dx 40. /
f-(;/—%dx,u=ﬁ+2 e +e* (x2 — 3)4
1 cosx
41. / —=dx 42. / - dx
8. /sinx cosxdx,u =sinx xIn/x sin® x
2x+3 3x+4
In exercises 9-46, evaluate the indicated integral. 43. x+7 dx “. | 3T dx
9. /xx —3)4dx 10. /xVx‘+3dx 45 / x? dx 4. 2-t-2
[ (2x + (% +x)’dx In exercises 47-56, evaluate the definite integral.
2 3
12. / (% +2x)(x* +3x%)2dx 47. / xvVx2+1dx 48, f x sin(rx?) dx
0 1

1 2
13. / cosx+/sinx + 1dx 14. f sec? x/tanx dx 49. f xz—iﬁdx 50. f x2e* dx
-1 0




¥ 4cosx * Cos /X
—_—d 52. d

51 [,,2 Ginx +12 /; VA

x/2 3
53. f cotxdx 54. / =X dx

x/4 1 X
dx—1 : /" x
dx 56. —dx

55. ,/; Jx o VxT+1

In exercises 57-66, evaluate the integral exactly, if possible.
Otherwise, estimate it numerically.

n n
57. fsinxzdx 58. fxsinxzdx
0 0
i ) o,
59. /xe"' dx 60. /.e“"dx
- -1
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In exercises 67-70, make the mdlcated substitution for an un-
specified function f(x).

63 f2 47 x
), B2

n/4 .
65. / secxdx 66.
0

2
67. u=x? for/ xf(x¥) dx
0
2
68. u=x3 forf 2 f(x*)dx
1

r/2
69. u=sinx forf (cosx) f(sinx) dx
0

70. u=ﬁforf4%—{2d
0

71. A function f(x) is said to be even if f(—x) = f(x) for all x.
f(x) =x2and f(x) = x* are even, since (—x)* = x* and (—x)* =
x*. A function f(x) is said to be odd if f(—x) = — f(x). Show
that cos x and x sinx are even, but sinx and x cosx are odd.

72. Suppose f(x) is continuous for all x. For any positive con-
stant a, [° f(x)dx = L2 fx)dx+ f§ f(x)dx. Using the
substitution ¥ = —x in f_ of (x)dx, show that if f(x) is even,
then [* f(x)dx =2 [ f(x)dx. Also, if f(x) is odd, show
that [ f(x)dx =0.
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In exercises 73-78, determine if the integrand is even or odd (or
neither), rewrite the integral accordingly and compute (or esti-
mate) the integral.

1
73. / xcosxdx

1
74, / xYsinxdx
1 -

1

] 2
76. fxe""dx
-1

|
78. / (x* - 2x)dx
-1

1 .
75. / x* =2+ 1)dx
-

1
77. / (x* + sinx) dx
-1

79. The location (X, 7) of the center of gravity (balance point) of a
flat plate bounded by y = f(x) > 0,a < x < b and the x-axis

b
[ xf(x)dx and 5 = LUferdx E

is given by X = = or the
[ fx)dx 2f f(x)dx

semicircle y = f(x) = /4 — x2, use symmetry as in exer-

cises 7378 to argue that x =0 and j = —- fo (4 —x?)dx.

Compute ¥.

80. Suppose that the population density of a group of animals can
be described by f(x) = xe~*" thousand animals per mile for
0 <x <2, where x is the distance from a pond. Graph
y = f(x) and briefly describe where these animals are likely to
be found. Find the total population fo fx)dx.

81. The voltage in an AC (alternating current) circuit is given by
V(t) = V, sin(2r ft), where f is the frequency. A voltmeter
does not indicate the amplitude V,,. Instead, the voltmeter reads
the root-mean-square (rms), the square root of the average
value of the square of the voltage over one cycle. That is, rms =

Jf fol/ ’V2(t)dt. Use the trigonometric identity sin®x =

4 — 1 cos2x to show that rms = V,, //2.

82. Graph y = f(¢) and find the root-mean-square of
-l1if-2<t<-1
f(t)=[t if-1<t<l1 ,whererms—-‘/ / f (@) dr.
1 ifl<t=<?2

83. ’ A predator-prey system is a set of differential equa-
tions modeling the change in population of interacting
species of organisms. A simple model of this type is

[ x(1) = x(®)a~by®)]
y(®) =y®)ldx(@) —c]

for positive constants a, b, ¢ and d. Each equation includes a
term of the form x(t)y(¢t), which is intended to represent the
result of confrontations between the species. Noting that the
contribution of this term is negative to x’(z) but positive to
¥'(t), explain why it must be that x(¢) represents the population
of the prey and y(t) the population of the predator. If
x(t) = y(t) = 0, compute x’(z) and y'(¢). In this case, will
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x and y increase, decrease or stay constant? Explain why
this makes sense physically. Determine x'(¢) and y’(t) and the
subsequent change in x and y at the so-called equilibrium
point x =c/d, y =a/b. If the population is periodic, we

T
we get/ -%dt_/ adt—/ by(t) dt. Evaluate each
0

integral to show that Inx(T) — Inx(0) = aT — [ by()dr.
Assuming thatx(t) has period T, we have x(T) = x(0) and so,

can show that the equilibrium point gives the average popula-
tion (even if the g)opulauon does not remain constant). To do

0= aT f by(t) dt. Finally, rearrange terms to show that
/T j;, y(t) dt = a/b; that is, the average value of the popula.
tion y(¢) is the equilibrium value y = a/b. Similarly, show that
the average value of the population x(t) is the ethbnum

value x = c/d.
A

s0, note thal -—t- =a - by(?). Integratmg both sides of this
equation from ¢ =0 to ¢ = T [the period of x(¢) and y(1)],

NUMERICAL INTEGRATION

Thus far, our development of the integral has paralleled our development of the derivative.
In both cases, we began with a limit definition that was difficult to use for calculation and
then, proceeded to develop simplified rules for calculation. At this point, you should be
able to find the derivative of nearly any function you can write down. You might expect that
with a few more rules you will be able to do the same for integrals. Unfortunately, this is
not the case. There are many functions for which no elementary antiderivative is available.
(By elementary antiderivative, we mean an antiderivative expressible in terms of the ele-
mentary functions with which you are familiar: the algebraic, trigonometric, exponential
and logarithmic functions.) For instance,

2
f cos(x?) dx
0

cannot be calculated exactly, since cos(x?) does not have an elementary antiderivative.
(Try to find one, but don’t spend much time, as mathematicians have proven that it can’t be
done.)

In fact, most definite integrals cannot be calculated exactly. When we can’t compute
the value of an integral exactly, we do the next best thing: we approximate its value
numerically. In this section, we develop three methods of approximating definite integrals.
None will replace the built-in integration routine on your calculator or computer. However,
by exploring these methods, you will be exposed to some of the basic ideas used to develop
more sophisticated numerical integration routines.

You should recognize that you already have a number of approximation methods at
your disposal. Since a definite integral is the limit of a sequence of Riemann sums, any
Riemann sum serves as an approximation of the integral,

b n
f fx)dx~ ) f(a) Ax,

i=1

where ¢; is any point chosen from the subinterval [x;_1, x;], fori = 1,2, ..., n. From the

definition of definite integral, observe that the larger n is, the better the approximation tends

to be. The reason we say that Riemann sums provide us with numerous approximation
i schemes is that we are free to choose the evaluation points, ¢;, for i = 1,2,...,n. The most |
| common choice leads to a method called the Midpoint Rule:
| .

b n
[ reax~ Y s@ax
a i=1




