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Chapter 5 Applications of the Definite Integral

‘We close this section with a summary of strategies for computing volumes of solids of

revolution.

VOLUME OF fA SOLID OF REVOLU

. Explain why the method of cylindrical shells produces
an integral with x as the variable of integration when
revolving about a vertical axis. (Describe where the shells are
and which direction to move in to go from shell to shell.)

4. Explain why the method of cylindrical shells has the
& same form whether or not the solid has a hole or cavity.
That is, there is no need for separate methods analogous to
disks and washers.

+f.. Suppose that the region bounded by y = x? —4 and
'y =4 — x? is revolved about the line x = 2. Carefully
explain which method (disks, washers or shells) would be eas-
iest to use to compute the volume.

. . Suppose that the region bounded by y = x* —3x — 1
I and y = —4, -2 < x < 2, is revolved about x = 3. Ex-
plain what would be necessary to compute the volume using
the method of washers, and what would be necessary to use the
method of cylindrical shells. Which method would you prefer
and why?

In exercises 5-12, sketch the region, draw in a typical shell, iden-
tify the radius and height of each shell and compute the volume.

The region bounded by y = x? and the x-axis, —1 <x < |,
revolved about x = 2

The region bounded by y = x? and the x-axis, -1 <x <1,
revolved about x = —2



10.

1L

12.

The region bounded by y =x,y = —x and x =1 revolved
about the y-axis

The region bounded by y = x,y = —x and x =1 revolved
aboutx =1

The region bounded by y =x,y = —x and y = 1 revolved
abouty =2

The region bounded by y =x,y = —x and y = 1 revolved
abouty = —2

The right half of x2 + (y — 1)2 = 1 revolved about the x-axis

The right half of x? + (y — 1)? = 1 revolved about y = 2

In exercises 13-20, use cylindfiéal shells to compute the volume.

13.

14.

15.

16.

17.

18.

19.

20.

The region bounded by y = x? and y = 2 — x?, revolved about
x=-2

The region bounded by y = x? and y = 2 — x2, revolved about
x=2

The region bounded by x = y? and x =1 revolved about
y=-2

The region bounded by x = y* and x = 1 revolved about
y=2

. The region bounded by y = x and y = x? — 2 revolved about

x=2

The region bounded by y = x and y = x? — 2 revolved about
x=3

The region bounded by x = (y — 1)? and x = 1 revolved about
the x-axis

The region bounded by x = (y — 1) and x = 1 revolved about
y=2

In exercises 21-30, use the best method available to find each
volume.

21.

22,

23,

The region bounded by y =4 — x, y = 4 and y = x revolved
about

(a) x-axis (b) y-axis ©) x=4 @dy=4

The region bounded by y=x+2,y=—-x—-2 and x =0
revolved about

(@ y=-2 (c) y-axis  (d) x-axis

®) x=-2

The region bounded by y = x and y = x? — 6 revolved about
b y=3

(@ x=3 ©)x=-3 @y=-6

24,

25.

26.

27.

28.

29.

30.

Section 5.3 Volumes by Cylindrical Shells 433

The region bounded by x = y? and x = 2 + y revolved about

(@ x=—1 ® y=-1 ©x=-2 @y=-2

The region bounded by y = cosx and y = x* revolved about

@ x=2 (b) y=2 (c) x-axis (@) y-axis

The region bounded by y = sinx and y = x? revolved about

@y=1 ® x=1 (c) y-axis  (d) x-axis
The region bounded by y = x2, y = 2 — x and x = 0 revolved

about

(a) x-axis (b) y-axis © x=1 @y=2
The region bounded by y =2 —x2,y = x (x > 0) and the

y-axis revolved about

(a) x-axis (b) y-axis ©x=-1 dy=-1
The region bounded by y=2—x,y=x—2 and x = y?

revolved about
(a) x-axis (b) y-axis

The region bounded by y = e* — 1, y =2 — x and the x-axis
revolved about

(a) x-axis (b) y-axis

In exercises 31-36, the integral represents the volume of a solid.
Sketch the region and axis of revolution that produce the solid.

31.

32.

33.

w

35

37.

38.

39.

2
[ 7(2x — x*)* dx
0

2
f w4 —x2+4)? - (x? -4+ 4 dx
2

1 2
f l(/F) - y*1dy 34, f 74—y dy
0 (1]

1 2
/ 2ex(x — x2)dx 36. j 2n4—-y)y+y)dy
o 0

Use a method similar to our derivation of equation (3.1) to
derive the following fact about a circle of radius R. Area =
nR* = [f c(r) dr, where c(r) = 2rrr is the circumference of
a circle of radius r. . '

You have probably noticed that the circumference of a circle
(27rr) equals the derivative with respect to r of the area of the
circle (zr?). Use exercise 37 to explain why this is not a
coincidence.

A jewelry bead is formed by drilling a 1-cm hole from the
center of a 1-cm sphere. Explain why the volume is given by
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. . ]
f 11/2 4xx~/1 — x2dx. Evaluate this integral or compute the hill. What should the radius be to give the researcher 10% of ]
volume in some easier way. the dirt?

40. Find the size of the hole in exercise 39 such that exactly half the 42, ’ From a sphere of radius R, a hole of radius r is drilleg
volume is removed. out of the center. Compute the volume removed in term;
of R and r. Compute the length L of the hole in terms of R angd
41. An anthill is in the shape formed by revolving the region r. Rewrite the volume in terms of L. Is it reasonable to say tha
bounded by y =1 — x? and the x-axis about the y-axis. A the volume removed depends on L and not on R?
researcher removes a cylindrical core from the center of the

o

A ARC LENGTH AND SURFACE AREA

In this section, we use the definite integral to investigate two additional measures of geo-
metric size. Length and area are quantities you already understand intuitively. But, as you
have learned with area, the calculation of these quantities can be surprisingly challenging
for many geometric shapes. The calculations that we explore here are complicated by an
increase in the dimension. Specifically, we will compute the length (a one-dimensional
measure) of a curve in two dimensions and we will compute the area (a two-dimensional
measure) of a surface in three dimensions. As always, pay particular attention to the de-
rivations. As we have done a number of times now, we start with an approximation and
then proceed to the exact solution, using the notion of limit.
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Arc Lengfh

What could we mean by the length of the portion of the sine curve shown in Figure 5.34a?
(We call the length of a curve its arc length.) If the curve represented a road, you could
measure the length on your car’s odometer by driving along that section of road. If the
curve were actually a piece of string, you could straighten out the string and then measure
its length with a ruler. Both of these ideas are very helpful intuitively. They both involve
turning the problem of measuring length in two dimensions into the (much easier) problem
of measuring the length in one dimension.

To accomplish this mathematically, we first approximate the curve with several line
segments joined together. In Figure 5.34b, the line segments connect the points (0, 0),
T - r 1 n 3 1 ) L
’ Four line segments approximating (Z’ ﬁ) , (5, 1), (-4—, :/_5) and (7, 0) on the curve y = sin x. An approximation of

y = sinx. the arc length s of the curve is given by the sum of the lengths of the line segments:

 __ B 3 ,
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128 3.8201 You might notice that this estimate is too small. (Why is that?) We could improve our ap- '
proximation by using more than four line segments. In the table at left, we show estimates 3




