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Math 107H Exam 2

Show all work. How you get your answer is just as important, if not more important,
than the answer itself.

1. (20 pts.) Find the volume of the region obtained by revolving the region under the
graph of f(z) = Inz from z = 1 to z = 3 around the z-axis (see figure).
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2. (15 pts.) Set up, but do not evaluate, the integral which will compute the arclength

of the graph of the function g(z) = In(z% — 1) from z = 2 to z = 4.
(= U
(x)= =

| + (9‘()«)}L =\ (,&,\\

g~ |, (1B &

e con ﬂ\/O\lekQ, \H/\\j L/\%/Z}/l’ N\ ——

ke

b (D () _ s l”l“‘l

)\ = = 1
ay QL.\) (XL"\) (X )
A ) "XC‘) (H 0

—/’Z"{:\—)?:_d (xzﬂ\)
s
AXC
(?O/‘)'\OA’FIW )f_—- ——/\_—J = X‘%l"\l%ﬂ[ \—(ALX‘\‘\l B

|+ x=t xx
a3 LE) (@ 3D AR
=(Y¥lnS> ! -

é// w

:\2*(,\(3;-)}

mer s
e

L



3. (15 pts.) Volodinaria are a form of bacteria whose population, in the presence of
sufficient nutrients, will follow an exponential growth law P’(t) = kP(t). [We will
measure ¢ in days.] If an initial population of 10000 can grow to 30000 in four (4)

days, what is the value of the growth constant k£ 7

%O\y__y/:ky , EZ:)(OUQ
d_(rak Ly =ltrc g = % et
-\ & ny =K B
¥ gk >/ 7 ct




4. (10 pts. each) Find (if they exist) the limits of the following sequences:
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5. (10 pts. each) Determine the convergence or divergence of the following sequences:
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5 arctann -
i(;\o [Hint: what is hm arctann 7]

o rdan(ax) n'

!
@d}»o T‘Q& % = (V\+\)/ 5/\ Mm@)
) adon(e) o oted™) 1
ety G et )
R ac p—o? ordantr) —F T
(oge ul/\M’fo\/\jﬁf\‘ ¢ YR (€ Cloge 2

g M\_OV\(A+\,. )7 af u»d\

o-dortr) A &




