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1. Show that the alternating series E (-1)"In (n i ) converges.
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How close to the infinite sum can we guarantee that Z( —1)"In ( ) is?
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2. Use the Taylor series for f(z) = €%, centered at z = 0, to find a power series (centered
at 0) whose sum is

T
Use this to compute g®(0) (that is, the 85-th derivative of g, evaluated at x = 0).

[Note: As written, g(z) is not defined at = = 0. By declaring g(0) = 1, we do make it
continuous (and differentiable), as your work on this problem will show!]
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3. Find the Taylor polynomial Py(x) of degree 4, centered at z = 0, for the function
f(z) =zln(z + 1)

Using Taylor's Theorem, give a bound on the size of the error in using Py(z) to
estimate f(z), when —0.2 < z < 0.2.
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4. For the polar curve .
r=1+2sinf, —’ﬂb))

find the values of 8, 0 < 0 < 27 where the curve has a horizontal tangent line. [You
may leave your answers in a “pure” form, as values of the functions arctanz, arcsinz,

etc.]
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. Find the area inside one petal of the 3-petaled rose, given by the polar equation
r =1+ sin(36)

[One petal is defined by consecutive values of 8 for which r = 0; you should find such
a pair as part of your solution.)
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6. Find the length of the polar curve

e =) $hy=-2e

from § = -1 to 6 =1.
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