Solutions to some of the

Math 107H Practice problems for exam 1
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Substituting # = tanu, we have dr = sec? u du, and 2 + 1 = tan? u + 1 = sec? u, so
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Using the (right) right triangle, tanu:%,so cscu:L and cotu = —, so
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Alternate approach:
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i =(**) . Withu=2%+1, du =2z dz, and 2> = u — 1, so
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Settlng v = \/E, dv = ﬁ, and u = UQ, SO (***) = /m dv|v:ﬁ|uzw2+1 = (****)
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when A(v+ 1)+ B(v—1) = 1; plugging in v = 1 yields 24 =1, so A =1/2,
and plugging in v = —1 yields —2B =1, s0 B = —1/2. So
1 1 1 1
() = 5/ CESVNCES)) dvly= yzlu=s2+1 = §(ln|v =1 =Infv+1]) + ¢l yzlu=a2+1

1
= §(ln|\/ﬂ— 1 = In[vu+ 1)) + clu=s211

1
= §(ln|\/x2+1—1|—1n|\/:102+1+1|)+c

z? A Bz +C A(@®>+1)+ (Bz+C)(z —2)
— + = 780
(x=2)(x24+1) =x—-2 2241 (x —2)(x2+1)
z? = A(2? + 1) + (Bz + C)(z — 2) for some A, B,C .
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Setting x = 2, we get 4 = (A)(5) + 2B+ C)(0) = 54,80 A= s

Setting © = 0, we get 0 = (A)(1) + (B(0) + C)(-2) = g —2C,s02C = g, so C = % :
Setting x =1, we get 1 = (4)(2) + (B(1) + C)(-1) = 2% - B- %, S0



4 2 —2-5 1
oot 2 ,_822-5_ 1
5 5 5 5
g 2 4 1 +1 x +2 1
0 =- - = 0
v—2)(2+1) 5z-2 522+1 a2+l
(

/ 2% dz 4/ 1 d +1/ T d +2/ 1 d
— = ——de+~- | ——dr+= | —— dx
(x—=2)(22+1) 5) x—2 5/ 2241 5/ x2+1
Setting u = x — 2, du = dzx, so
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Setting u = 22 + 1, du = 2z dz, so = dr = =du, so
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By parts: u = Arcsin(x), so du = dx, and dv = dz, so v = . Then
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(*) = zArcsin dzx ; this integral we can do by substitution:
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By trig substitution: x = sinu, so dr = cosu du and /1 — 22 = cosu, so
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But if = sinu, then u = Arcsin(x), and cosu = v/1 — 22, so
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, SO we need

x=A(x+5)+ B(z+1) . Setting x = —5, we get —5 = B(—4), so B = Z
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Setting x = —1, we get —1 = A(4),s0 A= ——.
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