Math 107H, Section 3

Practice Problems for Exam 3
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1. Show that the alternating series Z converges, and determine a value of N so
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_ is within .001 of the infinite sum.
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2. Compute the radius of convergence of the following power series:
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3. Using the Taylor series 1 = Zx”, find a power series representation for the
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centered at x = 0 (by an appropriate substitution and multiplication). Use this to
find a series which converges to the integral
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4. Find the Taylor polynomial of degree 3, centered at x = 8, for the function
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and estimate the error in using your polynomial to approximate f(7) = 72/3,

5. Express the polar equation r = sin(36) as an equation in Cartesian coordinates.
[Hint: sin(360) = sin(0 = 26)...]
6. Find the (rectangular) equation of the line tangent to the graph of the polar curve
r = 3sinf — cos(30)

at the point where 0 = % .

7. Find the length of the polar curve r = 62 from § = 0 to § = 2.

8. Find the area inside of the graph of the polar curve
r = sin(f) — cos(0)
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[Extra credit: What does this curve look like? (Hint: multiply both sides by r.)]



