

Practice Exam 3 solutions

1. Show that the alternating series $\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln(n)}$ converges, and determine a value of N so that the partial sum $\sum_{n=2}^N \frac{(-1)^n}{\ln(n)}$ is within .001 of the infinite sum.

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln(n)} = \sum_{n=2}^{\infty} (-1)^n a_n \text{ for } a_n = \frac{1}{\ln(n)} = f(n) \text{ for } f(x) = \frac{1}{\ln(x)}.$$

Since $a_n > 0$ and $f'(x) = \frac{-1}{x(\ln x)^2} < 0$ for $x > 1$, a_n is decreasing, and $a_n \rightarrow 0$ as $n \rightarrow \infty$, since $\ln n \rightarrow \infty$ as $n \rightarrow \infty$. So the series satisfies all of the conditions of the alternating series test, so the series converges.

In particular, the N -th partial sum, $\sum_{n=2}^N \frac{(-1)^n}{\ln(n)}$, is within $a_{N+1} = \frac{1}{\ln(N+1)}$ of the infinite sum. So to be within .001, we would like to choose N so that $\frac{1}{\ln(N+1)} < .001$, so $\ln(N+1) > (1/.001) = 1000$, so $N+1 > e^{1000}$. So we can choose N to be any number larger than the whole number part of e^{1000} (which is a pretty huge number, really....)

2. Compute the radius of convergence of the following power series:

$$f(x) = \sum_{n=0}^{\infty} \frac{2^n - 1}{(n+4)^2} (x-3)^n = \sum a_n (x-3)^n$$

$$\frac{a_{n+1}}{a_n} = \frac{\frac{2^{n+1} - 1}{((n+1)+4)^2}}{\frac{2^n - 1}{(n+4)^2}} = \frac{2^{n+1} - 1}{2^n - 1} \frac{(n+4)^2}{(n+5)^2} = \frac{2 - 2^{-n}}{1 - 2^{-n}} \frac{(1 + \frac{4}{n})^2}{(1 + \frac{5}{n})^2}, \text{ and since}$$

$$\frac{1}{n} \rightarrow 0 \text{ and } 2^{-n} \rightarrow 0 \text{ as } n \rightarrow \infty,$$

$$\frac{a_{n+1}}{a_n} = \frac{2 - 2^{-n}}{1 - 2^{-n}} \frac{(1 + \frac{4}{n})^2}{(1 + \frac{5}{n})^2} \rightarrow \frac{2 - 0}{1 - 0} \frac{(1 + 4 \cdot 0)^2}{(1 + 5 \cdot 0)^2} = 2 \cdot 1 = 2 = L, \text{ so the radius of}$$

convergence of $\sum a_n (x-3)^n$ is $R = \frac{1}{L} = \frac{1}{2}$.

3. Using the Taylor series $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$, find a power series representation for the function

$$f(x) = \frac{x^2}{1+x^4}$$

centered at $x = 0$ (by an appropriate substitution and multiplication). Use this to find a series which converges to the integral

$$\int_0^{1/3} \frac{x^2}{1+x^4} dx .$$

$$\begin{aligned} f(x) &= \frac{x^2}{1+x^4} = x^2 \frac{1}{1+x^4} = x^2 \frac{1}{1-(-x^4)} \\ &= x^2 \sum_{n=0}^{\infty} (-x^4)^n = x^2 \sum_{n=0}^{\infty} (-1)^n x^{4n} = \sum_{n=0}^{\infty} (-1)^n x^{4n+2}, \\ \text{so } \int \frac{x^2}{1+x^4} dx &= \int \sum_{n=0}^{\infty} (-1)^n x^{4n+2} dx = c + \sum_{n=0}^{\infty} \frac{(-1)^n}{4n+3} x^{4n+3}. \end{aligned}$$

So by the Fundamental Theorem of Calculus,

$$\begin{aligned} \int_0^{1/3} \frac{x^2}{1+x^4} dx &= \sum_{n=0}^{\infty} \frac{(-1)^n}{4n+3} x^{4n+3} \Big|_0^{1/3} \\ &= \sum_{n=0}^{\infty} \frac{(-1)^n}{4n+3} \left(\frac{1}{3}\right)^{4n+3} - \sum_{n=0}^{\infty} \frac{(-1)^n}{4n+3} 0^{4n+3} = \sum_{n=0}^{\infty} \frac{(-1)^n}{4n+3} \left(\frac{1}{3}\right)^{4n+3} \end{aligned}$$

[FYI: a somewhat laborious partial fractions decomposition will demonstrate that

$$\begin{aligned} \int \frac{x^2}{1+x^4} dx &= \frac{-\sqrt{2}}{8} \ln \left(\frac{x^2 + \sqrt{2}x + 1}{x^2 - \sqrt{2}x + 1} \right) + \frac{\sqrt{2}}{4} \arctan(\sqrt{2}x + 1) + \frac{\sqrt{2}}{4} \arctan(\sqrt{2}x - 1) + C \end{aligned}$$

4. Find the Taylor polynomial of degree 3, centered at $x = 8$, for the function

$$f(x) = x^{2/3}$$

and estimate the error in using your polynomial to approximate $f(7) = 7^{2/3}$.

To find the Taylor polynomial, we need derivatives:

$$\begin{aligned} f(x) &= x^{2/3} \\ f'(x) &= (2/3)x^{-1/3} \\ f''(x) &= (-1/3)(2/3)x^{-4/3} \\ f'''(x) &= (-4/3)(-1/3)(2/3)x^{-7/3} \end{aligned}$$

Evaluating at $x = 8$, we get

$$\begin{aligned} f(8) &= 8^{2/3} = 2^2 = 4 \\ f'(8) &= (2/3)8^{-1/3} = (2/3)(1/2) = 1/3 \\ f''(8) &= (-1/3)(2/3)8^{-4/3} = (-1/3)(2/3)2^{-4} = (-2/9)(1/16) = -1/72 \\ f'''(8) &= (-4/3)(-1/3)(2/3)8^{-7/3} = (8/27)2^{-7} = (1/27)2^{-4} = 1/(27 \cdot 16) \end{aligned}$$

So the degree 3 Taylor polynomial is

$$P_3(x) = f(8) + f'(8)(x-8) + \frac{f''(8)}{2!}(x-8)^2 + \frac{f'''(8)}{3!}(x-8)^3$$

$$= 4 + \frac{1}{3}(x-8) + \frac{-1}{72 \cdot 2}(x-8)^2 + \frac{1}{27 \cdot 16 \cdot 6}(x-8)^3$$

For the error term, we need the fourth derivative:

$$f''''(x) = (-7/3)(-4/3)(-1/3)(2/3)x^{-10/3}$$

We know that the remainder $R_3(x) = f(x) - P_3(x)$ satisfies $|R_3(7)| \leq M \frac{|7-8|^4}{4!}$

where M is the largest value of $|f''''(x)|$ for x between 8 and 7. But $x^{-10/3}$ is a decreasing function, so its largest value will occur at the left endpoint, 7, so

$$|R_3(7)| \leq (-7/3)(-4/3)(-1/3)(2/3)7^{-10/3} \frac{|7-8|^4}{4!} \text{ (whatever that is...).}$$

5. Express the polar equation $r = \sin(3\theta)$ as an equation in Cartesian coordinates.

[Hint: $\sin(3\theta) = \sin(\theta = 2\theta)...$]

$$\sin(3\theta) = \sin(\theta = 2\theta) = \sin(\theta)\cos(2\theta) + \cos(\theta)\sin(2\theta) = \sin(\theta)(\cos^2(\theta) - \sin^2(\theta)) + \cos(\theta)(2\sin(\theta)\cos(\theta)) = 3\sin(\theta)\cos^2(\theta) - \sin^3(\theta)$$

All of these trig functions would like an ‘ r ’ (so $x = r\cos(\theta)$ and $y = r\sin(\theta)$), and so $r = \sin(3\theta)$ implies $r^4 = r^3(3\sin(\theta)\cos^2(\theta) - \sin^3(\theta)) = 3(r\sin(\theta))(r\cos(\theta))^2 - (r\sin(\theta))^3$, so

$$(x^2 + y^2)^2 = (r^2)^2 = r^4 = 3(r\sin(\theta))(r\cos(\theta))^2 - (r\sin(\theta))^3 = 3yx^2 - y^3,$$

so an equation in Cartesian coordinates is given by $(x^2 + y^2)^2 = 3yx^2 - y^3$.

[Note that $3\sin(\theta)\cos^2(\theta) - \sin^3(\theta) = 3\sin(\theta)(1 - \sin^2(\theta)) - \sin^3(\theta) = 3\sin(\theta) - 4\sin^3(\theta)$, so the ultimate answer can be written slightly differently, as $(x^2 + y^2)^2 = 3y(x^2 + y^2) - 4y^3$.]

6. Find the (rectangular) equation of the line tangent to the graph of the polar curve

$$r = 3\sin\theta - \cos(3\theta)$$

at the point where $\theta = \frac{\pi}{4}$.

$$r = 3\sin\theta - \cos(3\theta) = f(\theta), \text{ so}$$

$$x = r\cos\theta = f(\theta)\cos\theta \text{ and } y = r\sin\theta = f(\theta)\sin\theta, \text{ so}$$

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta}.$$

But $f'(\theta) = 3\cos\theta + 3\sin(3\theta)$, so

$$f'(\pi/4) = 3\cos(\pi/4) + 3\sin(3\pi/4) = 3(\sqrt{2}/2) + 3(-\sqrt{2}/2) = 0, \text{ and}$$

$$f(\pi/4) = 3\sin(\pi/4) - \cos(3\pi/4) = 3(\sqrt{2}/2) - (-\sqrt{2}/2) = 4(\sqrt{2}/2) = 2\sqrt{2}.$$

and since $\sin(\pi/4) = \cos(\pi/4) = \sqrt{2}/2$, we have, at $\theta = \pi/4$,

$$\begin{aligned} \frac{dy}{dx} &= \frac{f'(\pi/4)\sin(\pi/4) + f(\pi/4)\cos(\pi/4)}{f'(\pi/4)\cos(\pi/4) - f(\pi/4)\sin(\pi/4)} = \frac{(0)(\sqrt{2}/2) + (2\sqrt{2})(\sqrt{2}/2)}{(0)(\sqrt{2}/2) - (2\sqrt{2})(\sqrt{2}/2)} \\ &= \frac{(2\sqrt{2})(\sqrt{2}/2)}{-(2\sqrt{2})(\sqrt{2}/2)} = -1. \end{aligned}$$

So the slope of the tangent line is -1 , and it goes through the point $(x, y) = (f(\pi/4) \cos(\pi/4), f(\pi/4) \sin(\pi/4)) = ((2\sqrt{2})(\sqrt{2}/2), (2\sqrt{2})(\sqrt{2}/2)) = (2, 2)$, so the equation for the tangent line is $y - 2 = (-1)(x - 2)$, or $y = -x + 4$.

7. Find the length of the polar curve $r = \theta^2$ from $\theta = 0$ to $\theta = 2\pi$.

For $r = \theta^2 = f(\theta)$, since

$$(dx/d\theta)^2 + (dy/d\theta)^2 = (f(\theta))^2 + (f'(\theta))^2 = (\theta^2)^2 + (2\theta)^2 = \theta^4 + 4\theta^2 = \theta^2(\theta^2 + 4),$$

we have

$$\begin{aligned} \text{Length} &= \int_0^{2\pi} \sqrt{\theta^2(\theta^2 + 4)} d\theta = \int_0^{2\pi} \sqrt{\theta^2} \sqrt{\theta^2 + 4} d\theta \\ &= \int_0^{2\pi} |\theta| \sqrt{\theta^2 + 4} d\theta = \int_0^{2\pi} \theta \sqrt{\theta^2 + 4} d\theta \end{aligned}$$

Setting $u = \theta^2 + 4$, then $du = 2\theta d\theta$, and for

$\theta = 0$, $u = 4$, while for $\theta = 2\pi$, $u = 4\pi^2 + 4$, so

$$\begin{aligned} \text{Length} &= \frac{1}{2} \int_4^{4\pi^2+4} \sqrt{u} du = \left(\frac{1}{2}\right) \left(\frac{2}{3}\right) u^{3/2} \Big|_4^{4\pi^2+4} \\ &= \frac{1}{3} ((4\pi^2 + 4)^{3/2} - 4^{3/2}) = \frac{8}{3} ((\pi^2 + 1)^{3/2} - 1) \end{aligned}$$

8. Find the area inside of the graph of the polar curve

$$r = \sin(\theta) - \cos(\theta)$$

from $\theta = \frac{\pi}{4}$ to $\theta = \frac{5\pi}{4}$.

[Extra credit: What does this curve look like? (Hint: multiply both sides by r .)]

Since $\text{Area} = \int \frac{1}{2}(f(\theta))^2 d\theta$, we have

$$\begin{aligned} \text{Area} &= \frac{1}{2} \int_{\pi/4}^{5\pi/4} (\sin \theta - \cos \theta)^2 d\theta = \frac{1}{2} \int_{\pi/4}^{5\pi/4} \sin^2 \theta - 2 \sin \theta \cos \theta + \cos^2 \theta d\theta \\ &= \frac{1}{2} \int_{\pi/4}^{5\pi/4} 1 - 2 \sin \theta \cos \theta d\theta = \frac{1}{2} \int_{\pi/4}^{5\pi/4} 1 - \sin(2\theta) d\theta = \frac{1}{2} [\theta + \frac{1}{2} \cos(2\theta)] \Big|_{\pi/4}^{5\pi/4} \\ &= \frac{1}{2} [(5\pi/4 + \frac{1}{2} \cos(5\pi/2)) - (\pi/4 + \frac{1}{2} \cos(\pi/2))] = \frac{1}{2} [(5\pi/4 + \frac{1}{2}) - (\pi/4 + \frac{1}{2})] \\ &= \frac{1}{2} [(5\pi/4) - (\pi/4)] = \frac{1}{2} [\pi] = \frac{\pi}{2} \end{aligned}$$

To see what this curve is, we have $r = \sin(\theta) - \cos(\theta)$, so $r^2 = r \sin(\theta) - r \cos(\theta)$, so $x^2 + y^2 = y - x$, so $(x^2 + x) + (y^2 - y) = 0$, so $(x^2 + x + \frac{1}{4}) + (y^2 - y + \frac{1}{4}) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$, so $(x + \frac{1}{2})^2 + (y - \frac{1}{2})^2 = \frac{1}{2} = (\frac{1}{\sqrt{2}})^2$

This is a circle, centered at $(-\frac{1}{2}, \frac{1}{2})$, with radius $\frac{1}{\sqrt{2}}$!