Finding [In(1 + 2?) dz the “other” way...

It takes a bit longer, but we can make progress on this integral using the “obvious” sub-
stitution:
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Is this progress? Well, this we can make progress on by parts:
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But now we can make progress on the resulting integral by substitution again!
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then dv = % and w = v — 1 (from the above computation!),
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and y2 =u—1, sou=y%+1, and we get

R e il ==L

29/ 2[(y?+1)—1 1
BUt!/y2+1dy=/ ( y2+)1 ]dy:2/ AT = [y — arctan(y)] + C

So, putting it all together,
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(we keep coming back to this computation!),
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In summary, we substitute u = 1 + 22, then integrate by parts, then do the reverse

substitution y = v/u — 1 . The more direct approach (provided as a solution to the quiz)
essentally combines all of these together, into a single integration by parts.



