
Partial fractions: the integrals

Our discussion of partial fractions centered on how to rewrite a rational function
p(x)

q(x)
as

a sum of “nicer” functions. But how do we integrate the nicer functions? There are two
kinds of functions we find ourselves faced with:
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where x2 +ax+b has no real roots (i.e., a2
−4b < 0). For the first, a substitution u = x−r

will find us needing to integrate Au−k du , which should not worry us much. For the
second, completing the square, so
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we have, setting y = x +
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A to clean up the notation again).

The first of these pieces,
Ay

(y2 + c2)k
dy, again should not worry us; a second substitution

u = y2 + c2 will turn this into a power of u, which we can integrate. But what about the
second piece? If k = 1, then this integral is on our list:
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(if you forget this, a trig sub y = c tan u will give you the integral of
1

c
du to solve).

For k > 1, we can find a reduction formula by differentiating the function
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(y2 + c2)k−1
:
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Integrating (and pushing terms around), this becomes:
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Which is a reduction formula!


