Partial fractions: the integrals

p(z)

Our discussion of partial fractions centered on how to rewrite a rational function ﬁ as
q(z
a sum of “nicer” functions. But how do we integrate the nicer functions? There are two

kinds of functions we find ourselves faced with:
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where 12 +ax + b has no real roots (i.e., a? —4b < 0). For the first, a substitution u = x —r
will find us needing to integrate Au~* du , which should not worry us much. For the
second, completing the square, so
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we have, setting y = x + g (and, for ease of notation, ¢ = %
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(where y = x + g (of course) and D = B — gA to clean up the notation again).

The first of these pieces, - dy, again should not worry us; a second substitution

(y? +c?)
u = y? + ¢ will turn this into a power of u, which we can integrate. But what about the

second piece? If k = 1, then this integral is on our list:
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(if you forget this, a trig sub y = ctanu will give you the integral of — du to solve).
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For k > 1, we can find a reduction formula by differentiating the function + :
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Integrating (and pushing terms around), this becomes:
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Which is a reduction formulal!



