How /secx dxr = In|secx + tan x| + C might have been discovered

As an illustration of the fact that there is often more than one way to discover an an-
tiderivative, and a further illustration of the fact that one should not take the integrand
at face value, here is another way to discover the antiderivative of sec z, in a way that one
might imagine the first discoverer would have found it:
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Basically, effectively, the integrand has an odd number of cosines (—1 of them...), so our
rule of thumb tells us to try u = sinx. Now setting v = sinx, so du = cosx dz, then
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[Why? Just put the right-hand side back over a common denomenator. How might we
have discovered this? This follows from the method of “partial fractions”, which we will
be discussing soon.| So:
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Then setting v = 1 — u (so du = —dv) in the first integral and setting w =1+ u
(so dw = du) in the second, we have

u=sinzx
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Which looks nothing like our original answer! Except that
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as desired!



