
How

∫

sec x dx = ln | secx + tanx| + C might have been discovered

As an illustration of the fact that there is often more than one way to discover an an-
tiderivative, and a further illustration of the fact that one should not take the integrand
at face value, here is another way to discover the antiderivative of sec x, in a way that one
might imagine the first discoverer would have found it:

∫

sec x dx =

∫

dx

cos x
=

∫

cos x dx

cos2 x
=

∫

cos x dx

1 − sin2
x

Basically, effectively, the integrand has an odd number of cosines (−1 of them...), so our
rule of thumb tells us to try u = sin x. Now setting u = sin x, so du = cos x dx, then
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[Why? Just put the right-hand side back over a common denomenator. How might we
have discovered this? This follows from the method of “partial fractions”, which we will
be discussing soon.] So:
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Then setting v = 1 − u (so du = −dv) in the first integral and setting w = 1 + u

(so dw = du) in the second, we have
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So:
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Which looks nothing like our original answer! Except that
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= (sec x + tanx)2,

so
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= ln | sec x + tanx| + C,

as desired!


