Math 107H Practice Exam 2 Solutions

Note: Most sequences/series can be shown to converge or diverge in more than one
way; the solutions below illustrate only one such method. Your approach may differ....

1. Find the volume of the region obtained by revolving the region under the graph of
f(z) =Inz from x = 1 to x = 3 around the z-axis (see figure).
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By parts: u= (Inx)? , du = dr ,dv=dr ,v==x
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3. Determine the convergence or divergence of the following sequences:
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4. Determine the convergence or divergence of the following series:

(a) Z lnn 373 [Hint: limit compare, then integral...]
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so Y a, converges precisely when > b,, converges. But:
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b, = W = f(n) for f(x) = W, which is continuous and decreasing (z

and In(z) are both increasing, so (Inz)?/? is increasing, so their reciprocals are decreasing,
and so the product is decreasing). So we can apply the integral test:
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/ W dx diverges, so Y _ b, diverges, so Y _ a,, diverges.
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But: Zb Z — 62 el which converges (p-series, p = 3 > 1), so Zb
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6. Set up, but do not evaluate, the integral which will compute the arclength of the
graph of y = v/ 1 + 22 from x = 0 to = 3.
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6. Find the following limits:
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since (3/4)" — 0 as n — oo, since |3/4| < 1.

8. Use a comparison test to determine the convergence or divergence of each of the
following series:
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Looking at the dominant terms, this series behaves like one with n-th term
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So since Z n=G converges [p-series with p = 6 > 1],
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Looking at the dominant terms, this series behaves like one with n-th term 29n = 72
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So since Z — converges [p-series with p =2 > 1],
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