Math 107H Practice Exam 2 Solutions

Note: Most sequences/series can be shown to converge or diverge in more than one way; the solutions below illustrate only one such method. Your approach may differ....

1. Find the volume of the region obtained by revolving the region under the graph of $f(x) = \ln x$ from x = 1 to x = 3 around the x-axis (see figure).

Integrating slices
$$dx$$
: Volume= $\pi \int_1^3 (\ln x)^2 dx = (*)$
By parts: $u = (\ln x)^2$, $du = \frac{2\ln x}{x} dx$, $dv = dx$, $v = x$
 $(*) = \pi x (\ln x)^2 \Big|_1^3 - \pi \int_1^3 2\ln x dx = (**)$
By parts again: $u = 2\ln x$, $du = \frac{2}{x} dx$, $dv = dx$, $v = x$
 $(**) = \pi x (\ln x)^2 \Big|_1^3 - \pi (2x \ln x) Big \Big|_1^3 - \int_1^3 2 dx \Big) =$
noindent **2.** Find the improper integral $\int_2^\infty \frac{1}{x(\ln x)^3} dx$.
 $\int \frac{1}{x(\ln x)^3} dx = \int \frac{du}{u^3}\Big|_{u=\ln x}$ via the *u*-substitution $u = \ln x$, so $du = \frac{1}{x} dx$,
which equals $\int u^{-3} du\Big|_{u=\ln x} = -\frac{1}{2}u^{-2} + c\Big|_{u=\ln x} = -\frac{1}{2(\ln x)^2} + c$
So $\int_2^\infty \frac{1}{x(\ln x)^3} dx = \lim_{n\to\infty} \int_2^N \frac{1}{x(\ln x)^3} dx$
 $= \lim_{n\to\infty} -\frac{1}{2(\ln x)^2}\Big|_2^N = \lim_{n\to\infty} \frac{1}{2(\ln 2)^2} - \frac{1}{2(\ln N)^2}$
But since $\ln N \to \infty$ as $N \to \infty$, $\frac{1}{2(\ln N)^2} \to 0$ as $N \to \infty$, so

3. Determine the convergence or divergence of the following sequences:

(a)
$$a_n = \frac{n^3 + 6n^2 \ln n - 1}{2 - 3n^3} = \frac{1 + 6(\ln n)/n - 1/n^3}{2/n^3 - 3}.$$

and since $1/n^3 \to 0$ and $(\ln n)/n \to 0$ as $n \to \infty$, $a_n \to \frac{1+6\cdot 0-0}{2} = \frac{1}{2} = -\frac{1}{2}$ as $n \to \infty$.

$$(\mathbf{b}) \ b_n = \frac{n^{n+\frac{1}{n}}}{(n+3)^n}$$

$$b_n = \frac{n^{n+\frac{1}{n}}}{(n+3)^n} = \frac{n^n n^{\frac{1}{n}}}{(n+3)^n} = \frac{n^{\frac{1}{n}}}{\left(\frac{n+3}{n}\right)^n} = \frac{n^{\frac{1}{n}}}{\left(1+\frac{3}{n}\right)^n} \cdot$$
But $n^{\frac{1}{n}} \to 1$ and $\left(1+\frac{3}{n}\right)^n \to e^3$ as $n \to \infty$, so $b_n \to \frac{1}{e^3} = e^{-3}$ as $n \to \infty$.

4. Determine the convergence or divergence of the following series:

(a)
$$\sum_{n=2}^{\infty} \frac{1}{(n-1)(\ln n)^{2/3}}$$
 [Hint: limit compare, then integral...]
 $a_n = \frac{1}{(n-1)(\ln n)^{2/3}}$ looks like $b_n = \frac{1}{n(\ln n)^{2/3}}$, and $\frac{a_n}{b_n} = \frac{n}{n-1} \to 1$ as $n \to \infty$,
so $\sum a_n$ converges precisely when $\sum b_n$ converges. But:
 $b_n = \frac{1}{n(\ln n)^{2/3}} = f(n)$ for $f(x) = \frac{1}{x(\ln x)^{2/3}}$, which is continuous and decreasing (x $\ln(x)$) are both increasing, so $(\ln x)^{2/3}$ is increasing, so their reciprocals are decreasing.

and $\ln(x)$ are both increasing, so $(\ln x)^{2/3}$ is increasing, so their reciprocals are decreasing, and so the product is decreasing). So we can apply the integral test:

$$\int \frac{1}{x(\ln x)^{2/3}} dx = \int \frac{du}{u^{2/3}} du|_{u=\ln x} = 3u^{1/3}|_{u=\ln x} = 3(\ln x)^{1/3}, \text{ so}$$
$$\int_{2}^{\infty} \frac{1}{x(\ln x)^{2/3}} dx = \lim_{N \to \infty} [3(\ln N)^{1/3} - 3(\ln 2)^{1/3}], \text{ but since } \ln N \to \infty \text{ as } N \to \infty,$$
$$\int_{2}^{\infty} \frac{1}{x(\ln x)^{2/3}} dx \text{ diverges, so } \sum b_n \text{ diverges, so } \sum a_n \text{ diverges.}$$

(b)
$$\sum_{n=0}^{\infty} \frac{6n}{(1-n^2)^2}$$
 $a_n = \frac{6n}{(1-n^2)^2}$ looks like $b_n = \frac{6n}{(-n^2)^2} = \frac{6}{n^3}$, which converges:

So note that $\frac{a_n}{b_n} = \frac{(-n^2)^2}{(1-n^2)^2} = \frac{1}{(\frac{1}{n^2}-1)^2}$, and since $1/n^2 \to 0$ as $n \to \infty$, $\frac{a_n}{b_n} \to \frac{1}{(0-1)^2} = 1$ as $n \to \infty$, so by limit comparison, $\sum a_n$ converges precisely when $\sum b_n$ converges.

But:
$$\sum b_n = \sum \frac{6}{n^3} = 6 \sum \frac{1}{n^3}$$
, which converges (*p*-series, $p = 3 > 1$), so $\sum b_n$ converges, so $\sum a_n = \sum_{n=0}^{\infty} \frac{6n}{(1-n^2)^2}$ converges.

6. Set up, but do not evaluate, the integral which will compute the arclength of the graph of $y = x\sqrt{1+x^2}$ from x = 0 to x = 3.

$$f(x) = x\sqrt{1+x^2} = x(1+x^2)^{\frac{1}{2}}, \text{ so } f'(x) = (1+x^2)^{\frac{1}{2}} + x(\frac{1}{2})(1+x^2)^{-\frac{1}{2}}(2x) = (1+x^2)^{\frac{1}{2}} + x^2(1+x^2)^{-\frac{1}{2}}.$$

So Arclength = $\int_0^3 \sqrt{1+[f'(x)]^2} \, dx = \int_0^3 \sqrt{1+[(1+x^2)^{\frac{1}{2}} + x^2(1+x^2)^{-\frac{1}{2}}]^2} \, dx$

6. Find the following limits:

(a)
$$\lim_{n \to \infty} \frac{1 + \sqrt{2n}}{\sqrt{n}} = (*)$$

(*) $= \lim_{n \to \infty} \frac{(1/\sqrt{n}) + (\sqrt{2}\sqrt{n}/\sqrt{n})}{(\sqrt{n}/\sqrt{n})} = \lim_{n \to \infty} \frac{(1/\sqrt{n}) + \sqrt{2}}{1}$
 $= \lim_{n \to \infty} \sqrt{1/n} + \sqrt{2} = \sqrt{0} + \sqrt{2} = \sqrt{2},$

since $a_n = 1/n \to 0$ as $n \to \infty$, so $\sqrt{a_n} \to \sqrt{0}$, since $\sqrt{x} \to 0$ as $x \to 0$.

(b)
$$\lim_{n \to \infty} \frac{4^n + 3^n}{4^n - 3^n} = (**)$$

 $(**) = \lim_{n \to \infty} \frac{4^n/4^n + 3^n/4^n}{4^n/4^n - 3^n/4^n} = \lim_{n \to \infty} \frac{1 + (3/4)^n}{1 - (3/4)^n} = \frac{1+0}{1-0} = 1$
since $(3/4)^n \to 0$ as $n \to \infty$, since $|3/4| < 1$.

8. Use a comparison test to determine the convergence or divergence of each of the following series:

(a)
$$\sum_{n=0}^{\infty} \frac{n^{\frac{1}{3}}}{\sqrt{n^3 + 7}}$$

Looking at the dominant terms, this series behaves like one with *n*-th term $\frac{n^{\frac{1}{3}}}{\sqrt{n^3}} = n^{\frac{1}{3}-\frac{3}{2}} = n^{-\frac{7}{6}}$, which converges.

More precisely, $\lim_{n \to \infty} \frac{\frac{n^{\frac{1}{3}}}{\sqrt{n^3 + 7}}}{\frac{n^{\frac{1}{3}}}{\sqrt{n^3}}} = \lim_{n \to \infty} \frac{1}{\sqrt{\frac{n^3 + 7}{n^3}}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{7}{n^3}}} = \frac{1}{\sqrt{1 + 0}} = 1.$ So since $\sum_{n=1}^{\infty} n^{-\frac{7}{6}}$ converges [*p*-series with $p = \frac{7}{6} > 1$], $\sum_{n=0}^{\infty} \frac{n^{\frac{1}{3}}}{\sqrt{n^3 + 7}}$ converges, by the limit comparison test.

(b)
$$\sum_{n=1}^{\infty} \frac{n+2^n}{n^2 2^n}$$

Looking at the dominant terms, this series behaves like one with *n*-th term $\frac{2^n}{n^2 2^n} = \frac{1}{n^2}$, which converges which converges.

More precisely,
$$\lim_{n \to \infty} \frac{\left(\frac{n+2^n}{n^2 2^n}\right)}{\left(\frac{2^n}{n^2 2^n}\right)} = \lim_{n \to \infty} \frac{\frac{n}{2^n} + 1}{1} = \lim_{n \to \infty} \frac{n}{2^n} + 1 = 0 + 1 = 1, \text{ since}$$
$$\frac{n}{2^n} \to 0 \text{ as } n \to \infty, \text{ by L'Hôpital:}$$
$$\lim_{n \to \infty} \frac{x}{2^n} = \lim_{n \to \infty} \frac{(x)'}{n} = \lim_{n \to \infty} \frac{1}{2^n} = 0 \text{ since } 2^x \text{ gets (really) large as } x \text{ gets large}$$

 $\lim_{x \to \infty} \frac{x}{2^x} = \lim_{x \to \infty} \frac{(x)}{(2^x)'} = \lim_{x \to \infty} \frac{1}{2^x \ln 2} = 0$, since 2^x gets (really) large as x gets large. So since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges [*p*-series with p = 2 > 1],

 $\sum_{n=0}^{\infty} \frac{n+2^n}{n^2 2^n}$ converges, by the limit comparison test.