Improper integrals: dominant terms decide

When we are dealing with an improper integral of the form $\int_{-\infty}^{\infty} \frac{f(x)}{f(x)} dx$ tive is the the 'dominant' terms in the numerator and denominator determine whether or $g(x)$ dx , our perspecnot the integral converges. By 'dominant' we mean that if $f(x) = a_1(x) + a_2(x) + \cdots + a_n(x)$, then the term $a_1(x)$ dominates if $\frac{a_i(x)}{x_i(x)}$ $\frac{a_i(x)}{a_1(x)} \to 0$ as $x \to \infty$, for every other term $i = 2, \ldots, n$. Then if $a_1(x)$ and $b_1(x)$ are the dominant terms of the top and bottom, our result is that

$$
\int_{a}^{\infty} \frac{f(x)}{g(x)} dx
$$
 converges precisely when
$$
\int_{a}^{\infty} \frac{a_1(x)}{b_1(x)} dx
$$
 converges.

One way to justify this in any particular instance is to note that since $\frac{a_i(x)}{x_i(x)}$ $\frac{a_1(x)}{a_1(x)} \to 0$ and $b_i(x)$ $\frac{\partial_i(x)}{\partial_1(x)} \to 0$ for every $i \geq 2$, when we write

$$
f(x) = a_1(x) + a_2(x) + \dots + a_n(x) = a_1(x)[1 + \frac{a_2(x)}{a_1(x)} + \dots + \frac{a_n(x)}{a_1(x)}] = a_1(x)A(x)
$$
 and

$$
g(x) = b_1(x) + a_2(x) + \dots + b_m(x) = b_1(x)[1 + \frac{b_2(x)}{b_1(x)} + \dots + \frac{b_m(x)}{b_1(x)}] = b_1(x)B(x)
$$

we have $A(x) \to 1$ and $B(x) \to 1$ as $x \to \infty$ (since, other than the 1 in each sum, every other term goes to 0). This means that <u>eventually</u> $A(x)$ and $B(x)$ are both close to 1, so, eventually, say, $0.8 < A(x) < 1.2$ and $0.8 < B(x) < 1.2$. But then, eventually,

$$
0.8a_1(x) < a_1(x)A(x) = f(x) = a_1(x)A(x) < 1.2a_1(x) \text{ and}
$$
\n
$$
0.8b_1(x) < b_1(x)B(x) = g(x) = b_1(x)B(x) < 1.2b_1(x),
$$

[We are supposing here that the dominant terms $a_1(x)$, $b_1(x)$ are <u>positive</u>; if they are not, pull a minus sign out of the entire integral first! Otherwise, the inequalities go the opposite directions....]

and so, eventually, 2 3 $a_1(x)$ $\frac{a_1(x)}{b_1(x)} =$ $0.8a_1(x)$ $1.2b_1(x)$ $\lt \frac{f(x)}{1.91}$ $1.2b_1(x)$ $\lt \frac{f(x)}{f(x)}$ $g(x)$ $\lt \frac{f(x)}{2.81}$ $0.8b_1(x)$ $\lt \frac{1.2a_1(x)}{2.81(x)}$ $\frac{1}{\cos b_1(x)} =$ 3 2 $a_1(x)$ $\frac{a_1(x)}{b_1(x)}$. So $\frac{2}{2}$ 3 $a_1(x)$ $b_1(x)$ $\lt \frac{f(x)}{f(x)}$ $g(x)$ $\frac{3}{2}$ 2 $a_1(x)$ $\frac{a_1(x)}{b_1(x)}$. This means that if \int_{0}^{∞} a $a_1(x)$ $b_1(x)$ dx converges, then so does $\frac{3}{5}$ 2 \int^{∞} a $a_1(x)$ $b_1(x)$ dx , and since (eventually) $\int_{-\infty}^{\infty} \frac{f(x)}{f(x)} dx$ is smaller than $\frac{3}{8} \int_{-\infty}^{\infty} \frac{a_1(x)}{f(x)} dx$, $\int_{-\infty}^{\infty} \frac{f(x)}{f(x)} dx$

(eventually)
$$
\int_N \frac{f(x)}{g(x)} dx
$$
 is smaller than $\frac{3}{2} \int_N \frac{a_1(x)}{b_1(x)} dx$, $\int_N \frac{f(x)}{g(x)} dx$ converges, and so $\int_a^\infty \frac{f(x)}{g(x)} dx$ converges.

On the other hand, if \int_{0}^{∞} a $a_1(x)$ $b_1(x)$ dx diverges, then so does $\frac{2}{3}$ 3 \int^{∞} a $a_1(x)$ $b_1(x)$ dx , and since (eventually) \int^{∞} N $f(x)$ $g(x)$ dx is larger than $\frac{2}{3}$ 3 \int^{∞} N $a_1(x)$ $b_1(x)$ dx, \int^{∞} N $f(x)$ $g(x)$ dx diverges, and so \int^{∞} a $f(x)$ $g(x)$ dx diverges.

The same basic principle applies for most other situations. For example, dealing with something inside of a square (or other) root:

$$
\int_2^{\infty} \frac{x \, dx}{\sqrt{x^5 - 6x + 2}}
$$
 converges, since $\sqrt{x^5 - 6x + 2} = \sqrt{x^5} \sqrt{1 - \frac{6}{x^4} + \frac{2}{x^5}}$, and
 $\sqrt{1 - \frac{6}{x^4} + \frac{2}{x^5}} \to 1$ as $x \to \infty$, and so eventually $\frac{x}{2\sqrt{x^5}} < \frac{x}{\sqrt{x^5 - 6x + 2}} < \frac{2x}{\sqrt{x^5}}$, and
since $\int_a^{\infty} \frac{x \, dx}{\sqrt{x^5}} = \int_a^{\infty} \frac{dx}{x^{3/2}}$ converges, so does the original integral.

Integrals with a limit of integration equal to $-\infty$ behave similarly; we could use a u-substitution $u = -x$ to directly turn it into a integral in the form above.

Improper integrals where the function 'blows up' at an endpoint a (or inside of the interval) also have 'dominant terms', usually determined by the smallest powers of $x - a$ in the numerator and denominator. [To make things less challenging for ourselves, we can use a u-substitution $u = x - a$ (or $u = a - x$) to move the vertical asymptote to $u = 0$. The principle is basically the same:

For example, the function $\frac{x^2 - x + 2}{\sqrt{x^3 + x^5}}$, near $x = 0$, behaves like $\frac{2}{\sqrt{x^3}} =$ 2 $\frac{2}{x^{3/2}}$ (whose integral diverges), since

$$
f(x) = \frac{x^2 - x + 2}{\sqrt{x^3 + x^5}} = \frac{x^2 - x + 2}{\sqrt{x^3(1 + x^2)}} = \frac{1}{\sqrt{x^3}} \frac{x^2 - x + 2}{\sqrt{1 + x^2}}
$$

and $\frac{x^2 - x + 2}{\sqrt{1 + x^2}} \rightarrow$ 2 $\frac{2}{1}$ = 2 as $x \to 0$. So we can (eventually, i.e., near $x = 0$) trap $f(x)$ between two multiples of $\frac{1}{\sqrt{x^3}}$, and so the convergence of the integral of f mirrors that of 1

$$
\frac{1}{\sqrt{x^3}} \; .
$$

Generally, if we pull out the smallest powers of numerator and denominator and set them aside, then what remains will converge to a non-zero, finite number as we approach the asymptote. This means that the function behaves like a constant multiple of the pieces we set aside, and so has the same convergence 'profile'.