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Another approach to Simpson’s Rule

We can justify the formula for Simpson’s Rule by trying to imagine a formula which ‘cancels
out’ the errors in the Midpoint Rule and the Trapezoid Rule, but this requires you to know
the formulasfor the errors! A different approach, which leads to the same “rule”, comes
directly from a computation of the integral of a quadratic function.

For f(x) = ax2 + bx+ c,
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and noting that these expressions have the same sorts of terms as Q does, we might expect
that Q can be written as some combination of X , Y , and Z. And it can be! Since only Y
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This formula is the basis for Simpson’s Rule; an integral is approximated by a sum which
uses the right-hand side of this formula, summed over all subintervals you have cut your
original interval into. The point is that this gives the exactly correct answer for quadratic
functions; it therefore, in principle, takes into account the concavity of the quadratic, and
so, by analogy, should “take into account” the concavity of any function f . This gives,
with little extra computational work, a better approximation to the integral of f than
formulas which don’t “take into account” concavity (like the Midpoint and Trapezoidal
rules).

By design, Simpson’s Rule gives the exactly correct answer (and not just an approximation)
when f is a quadratic function. It is a remarkable fact that is also gives the exact answer
when f is a cubic! This is basically because for f(x) = ax3 we have
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(Why does this happen? I don’t know...)


