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Name:
Math 107H Exam 1

Show all work. How you get your answer is just as important, if not more important,
than the answer itself.

Find each of the following integrals.
X
Note that “ [ f(t) dt + C ” is not a sufficient computation of an antiderivative!

3
Some formulas of potential use can be found at the bottom of the last page of the exam.

1. (10 pts.) /(x-|—2)3/2 dz

Lexxl dwTdX




30 odd!.
/2
2. (15 pts.)/ sin® z dx
0 o
A

Z
= ( Snx ( Suax A& )

g (‘“CDSX)(SV\XO&X>
(oS X M~ ~siax o

=

PEREEEL
K w=©







i

Iy

R ¥ B




A, B O

T xS Y
= Al xa ) (ex ) x R(xxu ) ( (X b
( X)) ()H“‘t_)

= Al ) e ) B( xx4) v C ()‘@c-\)ﬁ“"
(= A ~ BB ¥ (" =33
—>R="
(e B+ (7= ac
=) (= \/r

| = (\)(v\) ‘4)+~(\) AU;Aq_B*

?
‘*-:'\ e ﬂ- = C(\Z\ -"i 2~ N
A S0 a7 9 K @L

w =X (uzxt) (u=xr4 )

(e (o) (e B
. E \
i ~L\"‘\X’H‘ NE <(>e.«~\)> * W] xett] < C



6. (15 pts.)\/ e sm(3:z:)d \‘3

o) L sA(x) v e nb(
( = g(pg(ﬁ&)o\x v -

= ¢ A3n — g—— 3 e X o5 (31 ) O

=~ A O *%g e oy (34) AX
= (ps(BX) = & M
o(w"'bs’ 3><> V=€

= g yr«B’Xch( QCM(%) ({ e SABXOM}

T —enABn - 3€ w2 T i(ﬁ ym3)< o&x\

o (0 §€ cun 3x okx = ~€“X5‘v~5><-3€"x@§“3x |

' . 1
v 3 X
&,} \ gQMXS“\A%KO‘\X — /L Q J\/\’}X 10 e 3)( AN C, \




7. (20 pts.) /(a:2+ 132 dz = /( 22+ 1 )3 dx
Thanlc ! Fonly | = »cCy
x=onu  olx= & udy
PR A sy

m:&&ly\
( [s2cu ) (&QQMO{M),%’%

oA

= “i S’ U\%Cmu\ (ﬂk u duy )
“r”“" x%m

(n=2) . o

_ 11# Qéu”(‘cv\m + 5/ ( %QQ.M+MM Ay c-ng RCU d“‘/\)

:”" oY

= ,L RCS"U(“OV\M + %Q&(A({b\/\ﬂ\ *‘ s ( \&QCU\{:&C&/\M)‘\‘(\/

| X %C/\w
\ @x/ ; Y - /{-CMM =X

//‘( 4

@j - ( (T \>>< ) g;“f a
«k il (KR *X\* C

\ e T

1 -2 _
/sec”x dx = ~ 1sec”—2xtan:c+z_1/sec” 22 dx

dy _ 1 Y (2k — 3) dy
Cz/ (y2+ )k (2k - 2) . (y2? + ¢?)k—1 + (2k —2) / (y? + c?)k-1



1. Find the following integrals (10 pts. each):
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2. When you apply the appropriate trigonometric substitutions, what do the following
integrals become?
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6. (15 pts.) Recall that if a function f has second derivative satisfying | f”(z)| < M for
every x in the interval [a, b], then the error E,, in approximating the integral fab f(z) dz
using the trapezoidal rule using n equal subintervals is at most

(b—a)?

12n?2
Based on this, how many subintervals should we divide the interval [2, 5] into in order

. . 5 .
to be sure to approximate the integral [ zlna dz with an error of less than 1_(1)6 ?
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