Math 106 Calculus 1 Topics for first exam

Chapter 2: Limits and Continuity

Rates of change and limits:

Limit of a function f at a point $a =$ the value the function 'should' take at the point $=$ the value that the points 'near' a tell you f should have at a

 $\lim_{x \to a} f(x) = L$ means $f(x)$ is close to L when x is close to (but not equal to) a

Idea: slopes of tangent lines

 $\lim_{x \to a} f(x) = L$ does <u>not</u> care what $f(a)$ is; it ignores it $\lim_{x\to a} f(x)$ need not exist! (function can't make up it's mind?)

Rules for finding limits:

If two functions $f(x)$ and $g(x)$ agree (are equal) for every x near a (but maybe not <u>at</u> *a*), then $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$

Ex.:
$$
\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 - 4} = \lim_{x \to 2} \frac{(x - 1)(x - 2)}{(x + 2)(x - 2)} = \lim_{x \to 2} \frac{x - 1}{x + 2} = 1 / over4
$$

If $f(x) \to L$ and $g(x) \to M$ as $x \to a$ (and c is a constant), then $f(x)+g(x)\rightarrow L+M$; $f(x)-g(x)\rightarrow L-M$; cf(x) $\rightarrow cL$; $f(x)g(x) \to LM$; and $f(x)/g(x) \to L/M$ provided $M \neq 0$ If $f(x)$ is a polynomial, then $\lim_{x \to x_0} f(x) = f(x_0)$

Basic principle: to solve $\lim_{x \to x_0}$, plug in $x = x_0$!

If (and when) you get $0/0$, try something else! (Factor $(x-a)$ out of top and bottom...)

If a function has something like $\sqrt{x} - \sqrt{a}$ in it, try multiplying (top and bottom) with $\sqrt{x} + \sqrt{a}$

(idea: $u = \sqrt{x}$, $v = \sqrt{a}$, then $x - a = u^2 - v^2 = (u - v)(u + v)$.)

Sandwich Theorem: If $f(x) \le g(x) \le h(x)$, for all x near a (but not <u>at</u> a), and $\lim_{x\to a} f(x) = \lim_{x\to a} h(x) = L$, then $\lim_{x\to a} g(x) = L$.

One-sided limits:

Motivation: the Heaviside function

The Heaviside function has no limit at 0; it can't make up its mind whether to be 0 or 1. But if we just look to either side of 0, everything is fine; on the left, H(0) `wants' to be 0, while on the right, H(0) `wants' to be 1.

It's because these numbers are different that the limit as we approach 0 does not exist; but the `one-sided' limits DO exist.

Limit from the right: $\lim_{x \to a^+} f(x) = L$ means $f(x)$ is close to L

when x is close to, and $bigger$ than, a Limit from the left: $\lim_{x\to a^{-}} f(x) = M$ means $f(x)$ is close to M

when x is close to, and smaller than, a

 $\lim_{x \to a} f(x) = L$ then means $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L$ (i.e., both one-sided limits exist, and are equal)

Limits at infinity / infinite limits:

 ∞ represents something bigger than any number we can think of. $\lim_{x \to \infty} f(x) = L$ means $f(x)$ is close of L when x is really large. $\lim_{x \to -\infty} f(x) = M$ means $f(x)$ is close of M when x is really large and negative. 1 1

Basic fact:
$$
\lim_{x \to \infty} \frac{1}{x} = \lim_{x \to -\infty} \frac{1}{x} = 0
$$

More complicated functions: divide by the highest power of x in the denomenator. $f(x), g(x)$ polynomials, degree of $f = n$, degree of $g = m$

$$
\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = 0 \text{ if } n < m
$$
\n
$$
\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = (\text{coeff of highest power in } f) / (\text{coeff of highest power in } g) \text{ if } n = m
$$
\n
$$
\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \pm \infty \text{ if } n > m
$$

 $\lim_{x \to a} f(x) = \infty$ means $f(x)$ gets really large as x gets close to a

Also have $\lim_{x\to a} f(x) = -\infty$; $\lim_{x\to a^+} f(x) = \infty$; $\lim_{x\to a^-} f(x) = \infty$; etc....

Typically, an infinite limit occurs where the denominator of $f(x)$ is zero

(although not always)

Asymptotes:

The line $y = a$ is a horizontal asymptote for a function f if $\lim_{x \to \infty} f(x)$ or $\lim_{x \to -\infty} f(x)$ is equal to a. I.e., the graph of f gets really close to $y = a$ as $x \to \infty$ or $a \to -\infty$

The line $x = b$ is a vertical asymptote for f if $f \to \pm \infty$ as $x \to b$ from the right or left. If numerator and denomenator of a rational function have no common roots, then vertical $asymptotes = roots of $denom$.$

Continuity:

A function f is <u>continuous</u> (cts) at \underline{a} if $\lim_{x\to a} f(x) = f(a)$

This means: (1) $\lim_{x\to a} f(x)$ exists ; (2) $f(a)$ exists ; and

(3) they're equal.

Limit theorems say (sum, difference, product, quotient) of cts functions are cts. Polynomials are continuous at every point;

rational functions are continuous except where denom=0. Points where a function is not continuous are called discontinuities Four flavors:

removable: both one-sided limits are the same jump: one-sided limts exist, not the same infinite: one or both one-sided limits is ∞ or $-\infty$ oscillating: one or both one-sided limits DNE

Intermediate Value Theorem:

If $f(x)$ is cts at every point in an interval [a, b], and M is between $f(a)$ and $f(b)$, then there is (at least one) c between a and b so that $f(c) = M$.

Application: finding roots of polynomials

Tangent lines:

Slope of tangent line $=$ limit of slopes of secant lines; at $(a, f(a))$:

$$
\lim_{x \to a} \frac{f(x) - f(a)}{x - a}
$$

Notation: call this limit $f'(a) =$ derivative of f at a

Different formulation: $h = x - a, x = a + h$ $f'(a) = \lim_{h \to 0}$ $f(a+h) - f(a)$ h $=$ limit of *difference* quotient

If $y = f(x)$ = position at 'time' x, then difference quotient = average velocity; $\text{limit} = \text{instantaneous velocity}.$

Chapter 3: Derivatives

The derivative of a function:

derivative = limit of difference quotient (two flavors: $h \to 0$, $x \to a$)

If $f'(a)$ exists, we say f is differentiable at a

Fact: f differentiable (diff'ble) at a , then f cts at a

Using $h \to 0$ notation: replace a with x (= variable), get $f'(x) = \underline{\text{new}}$ function $\overline{1}$ $f(z) - f(x)$

Or:
$$
f'(x) = \lim_{z \to x} \frac{f(x) - f(x)}{z - x}
$$

 $f'(x)$ = the derivative of $f =$ function whose values are the slopes of the tangent lines to the graph of $y=f(x)$. Domain = every point where the limit exists Notation:

Notation:

\n
$$
f'(x) = \frac{dy}{dx} = \frac{d}{dx}(f(x)) = \frac{df}{dx} = y' = D_x f = Df = (f(x))'
$$
\nDifferentiation rules:

\n
$$
\frac{d}{dx}(\text{constant}) = 0 \qquad \frac{d}{dx}(x) = 1
$$
\n
$$
(f(x)+g(x))' = (f(x))' + (g(x))' \qquad (f(x)-g(x))' = (f(x))' - (g(x))'
$$
\n
$$
(cf(x))' = c(f(x))'
$$
\n
$$
(f(x)g(x))' = (f(x))'g(x) + f(x)(g(x))' \qquad (\frac{f(x)}{g(x)})' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}
$$

 $(x^{n})' = nx^{n-1}$, for $n =$ natural number integer- rational number

$$
(a^x)' = K \cdot a^x
$$
, where $K = \frac{d}{dx}(a^x)\Big|_{x=0}$
[[(1/g(x))' = -g'(x)/(g(x))^2]]

Higher derivatives:

 $f'(x)$ is 'just' a <u>function</u>, so we can take its derivative!

$$
(f'(x))' = f''(x) \quad (= y'' = \frac{d^2y}{dx^2} = \frac{d^2f}{dx^2})
$$

= second derivative of f

Keep going! $f'''(x) = 3$ rd derivative, $f^{(n)}(x) = n$ th derivative

Rates of change

Physical interpretation: $f(t)$ = position at time t $f'(t)$ = rate of change of position = velocity $f''(t)$ = rate of change of velocity = acceleration $|f'(t)| =$ speed Basic principle: for object to change direction (velocity changes sign), $f'(\overline{t})=0$ somewhere (IVT!)

Examples:

Free-fall: object falling near earth; $s(t) = s_0 + v_0 t$ – g 2 t^2

 $s_0 = s(0) =$ initial position; $v_0 =$ initial velocity; $g=$ acceleration due to gravity

Economics:

 $C(x) = \text{cost of making } x \text{ objects}; R(x) = \text{revenue from selling } x \text{ objects};$ $P = R - C = \text{profit}$ $C'(x)$ = marginal cost = cost of making 'one more' object $R'(x) =$ marginal revenue; profit is maximized when $P'(x) = 0$; i.e., $R'(x) = C'(x)$

Derivatives of trigonometric functions

Basic limit: $\lim_{x\to 0}$ $\sin x$ \boldsymbol{x} $= 1$; everything else comes from this! $\lim_{h \to 0}$ $\overline{h\rightarrow 0}$ $1 - \cos h$ h $= 0$ Note: this uses radian measure! $\lim_{x\to 0}$ $\sin(bx)$ $\frac{1}{x} = \lim_{x \to 0} b$ $\sin(bx)$ $\frac{b}{bx} = \lim_{u \to 0} b$ $\sin(u)$ \overline{u} $= b$ Then we get: $(\sin x)' = \cos x$ $\prime = \cos x$ (cos x) $(\cos x)' = -\sin x$ $(\tan x)' = \sec^2 x$ $0' = \sec^2 x$ $(\cot x)' = -\csc^2 x$ $(\sec x)' = \sec x \tan x$ (csc x) $(\csc x)' = -\csc x \cot x$