Math 107 Practice Exam 2 Solutions

Note: Most sequences/series can be shown to converge or diverge in more than one
way; the solutions below illustrate only one such method. Your approach may differ....

1. (10 pts. each) Determine the convergence or divergence of the following sequences:
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2. (10 pts. each) Determine the convergence or divergence of the following series:

(a) Z lnn 373 [Hint: limit compare, then integral...]
1 . 1 an o n
ap = CES YL looks like b, = TSR and T T 1 as n — oo,
so Y a, converges precisely when > b,, converges. But:
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= ()2 = f(n) for f(z) = EPRLIER which is continuous and decreasing (z

and In(x) are both increasing, so (Inz)?/3 is increasing, so their reciprocals are decreasing,

and so the product is decreasing). So we can apply the integral test:
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(b) Z (1 nz)z an = (1—n2)? looks like by, ( 712)2 = —5, which converges:
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converges.



But: Zb ZF = 62 3 which converges (p-series, p = 3 > 1), so an
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converges, so ap = ———— converges.
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3. (10 pts. each) Determine the convergence or divergence of the following series:
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Since 25 — 1 and n — oo as n — oo, Z:l = (big)(%)(close to 1), which is big, as

a
n gets large, so L L oasn— 00, SO Z a, diverges by the Ratio Test.
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4. (20 pts.) Compute the radius of convergence of the following power series:
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5. (20 pts.) Find the Taylor polynomial of degree 3, centered at x = 8, for the function
f@) =2
and estimate the error in using your polynomial to approximate f(7) = 72/3.

To find the Taylor polynomial, we need derivatives:

(@) = a2

f(x) = (2/3)2~ /3

(@) = (=1/3)(2/3)z=*/?

f' (@) = (=4/3)(=1/3)(2/3)=~7/*

Evaluating at = 8, we get

f(8)=8%3=22=4

F'(8) = (2/3)871/% = (2/3)(1/2) = 1/3

F7(8) = (=1/3)(2/3)87%/% = (=1/3)(2/3)27* = (~2/9)(1/16) = ~1/72
f7(8) = (—4/3)(—1/3)(2/3)877/3 = (8/27)277 = (1/27)2~* = 1/(27/cdot16)
So the degree 3 Taylor polynomial is
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For the error term, we need the fourth derivative:
F" (@) = (=7/3)(=4/3)(=1/3)(2/3)z~10/3
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We know that the remainder R3(x) = f(x) — Ps(z) satisfies |R3(7)] < M
—10/3

4]

where M is the largest value of | f””(z)| for  between 8 and 7. But x is a decreasing

function, so its largest value will occur at the left endpoint, 7, so
784
|R3(7)] < (—7/3)(—4/3)(—1/3)(2/3)7—10/3% (whatever that is...).



