
Math 107 Sections 151-155

Topics for the first exam

Integration

Basic list:
∫

xn dx =
xn+1

n + 1
+ C (provided n 6= −1)

∫

1/x dx = ln |x| + C
∫

sin(kx) dx = − cos(kx)
k

+ C
∫

cos(kx) dx = sin(kx)
k

+ C
∫

sec2 x dx = tanx + C
∫

csc2 x dx = − cot x + C
∫

sec x tanx dx = sec x + C
∫

csc x cotx dx = − csc x + C
∫

tan x dx = ln | secx| + C
∫

sec x dx = ln | sec x + tanx| + C
∫

cot x dx = ln | sinx| + C
∫

csc x dx = − ln | csc x + cotx| + C
∫

ex dx = ex + C
∫

dx√
a2−x2

= Arcsin(x
a
) + c

∫

dx
x2+a2 = 1

a Arctan(x
a ) + c

∫

dx
|x|

√
x2−a2

= 1
aArcsec(x

a ) + c

Basic integration rules: for k=constant,
∫

k · f(x) dx = k
∫

f(x) dx
∫

(f(x) ± g(x) dx =
∫

f(x) dx ±
∫

g(x) dx

The Fundamental Theorem of Calculus
∫ x

a
f(t) dt = F (x) is a function of x. F (x) = the area under graph of f , from a to x.

FTC 2: If f is cts, then F ′(x) = f(x) (F is an antideriv of f !)

Since any two antiderivatives differ by a constant, and F (b) =
∫ b

a
f(t) dt, we get

FTC 1: If f is cts, and F is an antideriv of f , then
∫ b

a
f(x) dx = F (b) − F (a) = F (x) |ba

Integration by substitution. The idea: reverse the chain rule!

g(x) = u, then
d

dx
f(g(x))=

d

dx
f(u) = f ′(u)

du

dx
, so

∫

f ′(u)
du

dx
dx =

∫

f ′(u) du = f(u)+ c

∫

f(g(x))g′(x) dx ; set u = g(x) , then du = g′(x) dx,
so

∫

f(g(x))g′(x) dx =
∫

f(u) du , where u = g(x)

Example:
∫

x(x2 − 3)4 dx ; set u = x2 − 3, so du=2x dx . Then
∫

x(x2 − 3)4 dx = 1
2

∫

(x2 − 3)42x dx =1
2

∫

u4 du |u=x2−3 = 1
2

u5

5 + c |u=x2−3 = (x2−3)5

10 + c

The three most important points:
1. Make sure that you calculate (and then set aside) your du before doing step 2!
2. Make sure everything gets changed from x’s to u’s
3. Don’t push x’s through the integral sign! They’re not constants!

We can use u-substitution directly with a definite integral, provided we remember that
∫ b

a

f(x) dx really means

∫ x=b

x=a

f(x) dx , and we remember to change all x’s to u’s!

Ex:

∫ 2

1

x(1+x2)6 dx; set u = 1+x2, du = 2x dx . when x = 1, u = 2; when x = 2, u = 5;

so

∫ 2

1

x(1 + x2)6 dx =
1

2

∫ 5

2

u6 du = ...
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Integration by parts

Product rule: d(uv) = (du)v + u(dv)

reverse:
∫

u dv = uv −
∫

v du

Ex:
∫

x cosx dx : set u=x, dv=cos x dx du=dx, v = sin x (or any other antiderivative)
So:

∫

x cos x = x sinx −
∫

sin x dx = . . .

special case:

∫

f(x) dx; u = f(x), dv=dx

∫

f(x) dx = xf(x) −
∫

xf ′(x) dx

Ex:

∫

Arcsin x dx = x Arcsin x −
∫

x√
1 − x2

= . . .

The basic idea: integrate part of the function (a part that you can), differentiate the rest.
Goal: reach an integral that is “nicer”.

Ex:
∫

x3 lnx dx = (x4/4) lnx −
∫

(x4/4)(1/x) dx = . . .

Trig substitution

Idea: get rid of square roots, by turning the stuff inside into a perfect square!√
a2 − x2 : set x = a sin u . dx = a cosu du,

√
a2 − x2 = a cos u

Ex:

∫

1

x2
√

1 − x2
dx =

∫

cos u

sin2 u cosu
du

∣

∣

∣

x=sin u
= . . .

√
a2 + x2 : set x = a tanu . dx = a sec2 u du,

√
a2 + x2 = a sec u

Ex:

∫

1

(x2 + 4)3/2
dx =

∫

2 sec2 u

(2 sec u)3
du

∣

∣

∣

x=2 tan u
= . . .

√
x2 − a2 : set x = a sec u . dx = a secu tanu du,

√
x2 − a2 = a tanu

Ex:

∫

1

x2
√

x2 − 1
dx =

∫

sec u tanu

sec2 u tanu
du

∣

∣

∣

x=sec u
= . . .

Undoing the “u-substitution”: use right triangles! (Draw a right triangle!)
Ex: x = a sinu, then angle u has opposite = x, hypotenuse = a, so adjacent =

√
a2 − x2.

So cos u = (
√

a2 − x2)/a, tanu = x/
√

a2 − x2, etc.

Trig integrals: What trig substitution usually leads to!
∫

sinn x cosm x dx

If n is odd, keep one sinx and turn the others, in pairs, into cosx
(using sin2 x = 1 − cos2 x), then do a u-substitution u = cos x .

If m is odd, reverse the roles of sin x and cos x .
If both are even, turn the sinx into cos x (in pairs) and use the double angle formula

cos2 x =
1

2
(1 + cos(2x))

This will convert cosm x into a bunch of lower powers of cos(2x);
odd powers can be dealt with by substitution, even powers by another application of the
angle doubling formula!
∫

secn x tanm x dx =

∫

sinm x

cosn+m x
dx

If n is even, set two of them aside and convert the rest to tanx
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using sec2 x = tan2 x + 1, and use u = tanx .
If m is odd, set one each of sec x, tanx aside, convert the rest of the tanx to sec x

using tan2 x = sec2 x − 1, and use u = sec x .

If n is odd and m is even, convert all of the tanx to sec x (in pairs),
leaving a bunch of powers of sec x . Then use the reduction formula:

∫

secn x dx =
1

n − 1
secn−2 x tanx +

n − 2

n − 1

∫

secn−2 x dx

At the end, reach
∫

sec2x dx = tanx + C or
∫

sec x dx = ln | sec x + tanx| + C

A little “trick” worth knowing:

the substitution u =
π

2
− x, since sin(

π

2
− x) = cos x and cos(

π

2
− x) = sin x,

will reverse the roles of sin x and cos x,
so will turn cot x into tanu and csc x into sec u. So, for example, the integral
∫

cos4 x

sin7 x
dx =

∫

csc3 x cot4 x dx, which our techniques don’t cover,

becomes

∫

sec3 u tan4 u du, which our techniques do cover.

Partial fractions

rational function = quotient of polynomials
Idea: integrate by writing function as sum of simpler functions

Procedure: f(x) = p(x)/q(x)
(0): arrange for degree(p)<degree(q); do long division if it isn’t
(1): factor q(x) into linear and irreducible quadratic factors
(2): group common factors together as powers

(3a): for each group (x − a)n add together:
a1

x − a
+ · · ·+ an

(x − a)n

(3b): for each group (ax2 + bx + c)n add together:
a1x + b1

ax2 + bx + c
+ · · ·+ anx + bn

(ax2 + bx + c)n

(4) set f(x) = sum of all sums; solve for the ‘undetermined’ coefficients
put sum over a common denomenator (=q(x)); set numerators equal.

always works: multiply out, group common powers, set coeffs of the two polys equal
Ex: x + 3 = a(x − 1) + b(x − 2) = (a + b)x + (−a − 2b); 1 = a + b, 3 = −a − 2b

linear term (x − a)n: set x = a, will allow you to solve for a coefficient
if n ≥ 2, take derivatives of both sides! set x=a, gives another coeff.

Ex:
x2

(x − 1)2(x2 + 1)
=

A

x − 1
+

B

(x − 1)2
+

Cx + D

x2 + 1

=
A(x − 1)(x2 + 1) + B(x2 + 1) + (Cx + D)(x − 1)2

(x − 1)2(x2 + 1)
= . . .
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Numerical Integration

Sometimes (most times?) the Fundamental Theorem of Calculus won’t help us to
compute a definite integral; we can’t find an antiderivative. So we need to fall back on the
definition:

∑n
i=1 f(ci)∆xi approximates

∫ b

a
f(x) dx,

where the interval [a, b] is cut into n pieces of length ∆x1, . . .∆xn, and ci lies in the i-th
subinterval

Typically, for convenience, we choose the subintervals to have the same length ∆xi =
∆x = b−a

n , and make “standard” choices of elements in the i-th subinterval [xi−1, xi]:

L(f, n) =
∑n

i=1 f(xi−1)∆x (left endpoint estimate)

R(f, n) =
∑n

i=1 f(xi)∆x (right endpoint estimate)

M(f, n) =
∑n

i=1 f(xi−1+xi

2 )∆x (midpoint estimate)

In the end though, each of these is throwing out a lot of information, since it ap-
proximates f on an interval by a constant. We can do better, taking into account more
infmation about the function f , by approximating f by functions that better “fit” f on a
subinterval, whose integrals we know how to compute.

We focus on linear functions: we replace f on each subinterval by the linear function
having the same values at the endpoints. This essentially replaces a rectangle in our sums
with trapezoids. Since the area of a trapezoid is (length of base)(average of lengths of
heights), we end up with the estimate

T (f, n) =
∑n

i=1
f(xi−1)+f(xi)

2 ∆x = 1
2(

∑n
i=1 f(xi−1)∆x +

∑n
i=1 f(xi)∆x)

= 1
2 (L(f, n) + R(f, n)) (trapezoid estimate)

If f is close to being linear on each subinterval (i.e., f ′′ is not too big), this gives a
better estimate of the integral than either of L or R alone. In fact, if |f ′′(x)| ≤ K on [a, b],
then

|
∫ b

a
f(x) dx − T (f, n)| ≤ K (b−a)3

12n2

This, in practice, leads to very good estimates for the integrals of functions we don’t
know how to find antiderivatives for. Even for functions that we can find antiderivatives
for, this gives a practical way to approximate the values of those antiderivatives (think,
e.g., of arcsinx), by approximating the corresponding definite integrals.

Improper integrals

Fund Thm of Calc:

∫ b

a

f(x) dx = F (b) − F (a), where F ′(x) = f(x)

Problems: a = −∞, b = ∞; f blows up at a or b or somewhere in between
integral is“improper”; usual technique doesn’t work. Solution to this:

∫ ∞

a

f(x) dx = lim
b→∞

∫ b

a

f(x) dx

∫ b

−∞
f(x) dx = lim

a→−∞

∫ b

a

f(x) dx

(blow up at a)

∫ b

a

f(x) dx = lim
r→a+

∫ b

r

f(x) dx = lim
ε→0+

∫ b

a+ε

f(x) dx
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(similarly for blowup at b (or both!))
∫ b

a

f(x) dx = lim
s→b−

∫ s

a

f(x) dx = lim
ε→0+

∫ b−ε

a

f(x) dx

(blows up at c (b/w a and b))

∫ b

a

f(x) dx = lim
r→c−

∫ r

a

f(x) dx + lim
s→c+

∫ b

s

f(x) dx

The integral converges if (all of the) limit(s) are finite; otherwise, we say that the integral
diverges.

Comparison: 0 ≤ f(x) ≤ g(x) for all x;

if

∫ ∞

a

g(x) dx converges, so does

∫ ∞

a

f(x) dx

if

∫ ∞

a

f(x) dx diverges, so does

∫ ∞

a

g(x) dx

Applications of integration

Volume by slicing. To calculate volume, aprroximate region by objects whose volume
we can calculate.

Volume ≈
∑

(volumes of ‘cylinders’)
=

∑

(area of base)(height)
=

∑

(area of cross-section)∆xi .

So volume =

∫ right

left

(area of cross section) dx

Solids of revolution: disks and washers. Solid of revolution: take a region in the
plane and revolve it around an axis in the plane.

region

rotate

take cross-sections perpendicular to
axis of revolution;

cross-section = disk (area=πr2)
or washer (area=πR2 − πr2)

rotate around x-axis: write r
(and R) as functions of x,
integrate dx

rotate around y-axis: write r
(and R) as functions of y,
integrate dy

Otherwise, everything is as before: volume =

∫ right

left

A(x) dx or volume =

∫ top

bottom

A(y) dy

The same is true if axis is parallel to x− or y−axis; r and R just change
(we add a constant).
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Cylindrical shells. Different picture, same volume! Solid of revolution; use cylinders
centered on the axis of revolution. The intersection is a cylinder, with area = (circumfer-
ence)(height) = 2πrh

volume =

∫ right

left

(area of cylinder) dx or

∫ top

bottom

(area of cylinder) dy !

region

rotate

r

h

revolve around vertical line:
integrate dx

revolve around horizontal line:
integrate dy

Ex: region in plane between
y = 4x, y = x2, revolved around y-axis

left=0, right=4, r = x, h = (4x − x2) volume =

∫ 4

0

2πx(4x− x2) dx

Arclength. Idea: approximate a curve by lots of short line segments; length of curve ≈
sum of lengths of line segments.

Line segment between (ci, f(ci)) and (ci+1, f(ci+1)) has length
√

1 + (
f(ci+1) − f(ci)

ci+1 − ci
)2 · (ci+1 − ci) ≈

√

1 + (f ′(ci))2 · ∆xi

So length of curve =

∫ right

left

√

1 + (f ′(x))2 dx

The problem: integrating
√

1 + (f ′(x))2 ! Sometimes, 1+(f ′(x))2 turns out to be a perfect
square.....

More generally, we can work with parametric curves (x(t), y(t)) [think: t = time, so we
are travelling around the x-y plane].

Arclength: we approximate it the same way, as a sum of lengths of line seqments that
approximate the curve. Each segment has length

√

(∆x)2 + (∆y)2 =
√

(∆x/∆t)2 + (∆y/∆t)2∆t ≈
√

(x′(t))2 + (y′(t))2 dt

so the length of the curve is

∫ b

a

√

(x′(t))2 + (y′(t))2 dt
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