Math 107 Sections 151-155

Topics for the first exam

Integration

Basic list: o
[ dx = x+1+0(providedn7é—1) [1/zdx =Injz|+C

n

[ sin(kx) dz = %(kx) +C [ cos(kx) dz = Singm) +C
[sec? x dz = tanz + C [esc?x dz = —cotz + C
[secztanz dz = secx + C [escxcotr dv = —cscx + C
Jtanz dz = In|secz| 4+ C [secx dz = In|secx + tanz| + C
Jcotz dz = In|sinz|+ C Jescax de = —In|csca + cotz| + C
[e* dz=e"+C f\/a‘;ix——Arcsin(z)—i—c
[ #%s = & Arctan(£) + ¢ i lem L Arcsec(%) + ¢

Basic integration rules: for k=constant,
[k f(z)de =k [ f(z) dz [(f(z) £ g(z)dz = [ f(z) dz £ [g(z) dz
The Fundamental Theorem of Calculus
[F f(t) dt = F(z) is a function of z. ~ F(z) = the area under graph of f, from a to .
FTC 2: If f is cts, then F'(x) = f(x) (F is an antideriv of f!)

Since any two antiderivatives differ by a constant, and F'(b) = f f(t) dt, we get
FTC 1: If f is cts, and F is an antideriv of f, then fa f(x) de = F(b) — F(a) = F(x) |°

Integration by substitution. The idea: reverse the chaln rule'
d d
() = u, then “ f(gla)=cf(u) = f/(uw) T 50 [ f/u) % de = [ f'(u) du = () +c
[ flg(x))g'(z) da ; set u= g(x) , then du = g ($> dz,
so [ f(g(x))g'(z) dz = [ f(u) du , where u = g(z)
Example: [ x(2? — 3)4 dr ; set u = 2% — 3, so du=2x dr . Then
[a(2? = 3)* do = 1 [(2? 42xdm—§fu4du|u w2 3————|—c\u w2 3—(m_3)5+c

The three most important points:
1. Make sure that you calculate (and then set aside) your du before doing step 2!
2. Make sure everything gets changed from x’s to u’s
3. Don’t push z’s through the integral sign! They’re not constants!

We can use u-substitution directly with a definite integral, provided we remember that
z=b

/ f(x) dx really means / f(x) dx , and we remember to change all x’s to u’s!

r=a

2
Ex:/ (14 22)% dr; set u =14+ 22, du = 2z dx . when z =1, u = 2; when z = 2, u = 5;
1

2 1 /5
SO / (14 22)% do = —/ ub du = ...
1 2 Jz



Integration by parts
Product rule: d(uv) = (du)v + u(dv)

reverse: [u dv = uv — [v du

Ex: [xcosz dz : set u=z, dv=cosz dx du=dzx, v = sin z (or any other antiderivative)
So: [zcosz = xsinz — [sinx dz = ..
special case: /f x) dx; u = f(z), dv=dx /f xf(x) — /:cf’(a;) dz

Ex: Arcsin x dz = x Arcsin x — /
/ V1-— x2

The basic idea: integrate part of the function (a part that you can), differentiate the rest.
Goal: reach an integral that is “nicer”.

Ex: [2®Inz dz = (z*/4)Inz — [(2*/4)(1/z) dow =
Trig substitution

Idea: get rid of square roots, by turning the stuff inside into a perfect square!

va? — a2 : set x =asinu . dv = acosu du, va? — 22 = acosu

1 _ cosu
Ex: du
932\/1—332 sin? u cosu
Va?z + 22 set x =atanu . de = asec®u du, Va2 + 22 = asecu

1 2sec? u
Ex: | ————der= | ——— du
/ (22 +4)3/2 / (2secu)3
72 —a? : set x = asecu . dv = asecutanu du, Va2 —a? = atanu
1 sec u tan u
Ex: du
2222 — 1 secZ utanu
Undoing the “u-substitution”: use right triangles! (Draw a right triangle!)
Ex: # = asinu, then angle u has opposite = x, hypotenuse = a, so adjacent = Va2 — x2.

So cosu = (Va? — x2)/a, tanu = x/v/a? — 22, ete.
Trig integrals: What trig substitution usually leads to!
/Sin” x cos™ x dx

If n is odd, keep one sinx and turn the others, in pairs, into cosz
(using sin? 2z = 1 — cos? z), then do a u-substitution u = cosz .
If m is odd, reverse the roles of sinx and cosx .

If both are even, turn the sinx into cosz (in pairs) and use the double angle formula

r=sinu

r=2tanu

r=secu

1
cos? r = 5(1 + cos(2x))

This will convert cos™ z into a bunch of lower powers of cos(2x);
odd powers can be dealt with by substitution, even powers by another application of the
angle doubling formula!

: m
sin™ x
sec”z tan™ x dx = —— dx
cosntm g

If n is even, set two of them aside and convert the rest to tanz



using sec? z = tan?x + 1, and use v = tanz .

If m is odd, set one each of sec x, tan z aside, convert the rest of the tanx to secx
using tan?z = sec?x — 1, and use u = secx .
If n is odd and m is even, convert all of the tanz to secx (in pairs),
leaving a bunch of powers of secx . Then use the reduction formula:
1 n—2
/Sec” x dr = 1 sec" 2 rtanz + e /Sec”_2 x dx
n J—

At the end, reach [ sec’z dz = tanz + C or [secx dz = In|secx + tanz| + C

A little “trick” worth knowing:
. . 7T . . T ™ .
the substitution u = 5 — @, since sm(g —x) = cosx and COS(§ —x) =sinuz,
will reverse the roles of sinx and cos z,
so will turn cot x into tanu and cscx into secu. So, for example, the integral

4
cos* x ) .
dr = [ csc® zcot* x dx, which our techniques don’t cover

sin” z ’ ’

becomes [ sec® wtan® uw du, which our techniques do cover.

Partial fractions

rational function = quotient of polynomials
Idea: integrate by writing function as sum of simpler functions

Procedure: f(z) = p(x)/q(x)

(0): arrange for degree(p)<degree(q); do long division if it isn’t
1): factor ¢(z) into linear and irreducible quadratic factors

2): group common factors together as powers

(
(
(3a): for each group (z — a)™ add together:
(

a1 Ay,
+ e + R —
r—a (x —a)"
3b): for each group (az? + bx + ¢)™ add together:
ai1x + by an + by,
ax? +bx +c (az? + bx + )"

(4) set f(x) = sum of all sums; solve for the ‘undetermined’ coefficients
put sum over a common denomenator (=¢(x)); set numerators equal.
always works: multiply out, group common powers, set coeffs of the two polys equal
Ex: z+3=a(z—1)+bx—2)=(a+bx+(—a—2b);1=a+b,3=—a—2b
linear term (z — a)™: set x = a, will allow you to solve for a coefficient
if n > 2, take derivatives of both sides! set x=a, gives another coeff.

e x? A n B +Cx—|—D
T @o12@2 1) r-1 (@—12 " 2241
Az —1)(2?+ 1)+ B(z? + 1) + (Cx + D)(z — 1)?

(z —1)2(2% +1)




Numerical Integration

Sometimes (most times?) the Fundamental Theorem of Calculus won’t help us to
compute a definite integral; we can’t find an antiderivative. So we need to fall back on the
definition:

Sy f(ci)Ax; approximates f; f(z) dx
where the interval [a, b] is cut into n pieces of length Axq,...Az,, and ¢; lies in the i-th
subinterval

Typically, for convenience, we choose the subintervals to have the same length Ax; =
Ax = b_T”, and make “standard” choices of elements in the i-th subinterval [z;_1, z;]:

L(f,n) =" f(xi—1)Az  (left endpoint estimate)
R(f,n)=>", f(z;)Az  (right endpoint estimate)
M(f,n) =31 f(2=L")Az  (midpoint estimate)

In the end though, each of these is throwing out a lot of information, since it ap-
proximates f on an interval by a constant. We can do better, taking into account more
infmation about the function f, by approximating f by functions that better “fit” f on a
subinterval, whose integrals we know how to compute.

We focus on linear functions: we replace f on each subinterval by the linear function
having the same values at the endpoints. This essentially replaces a rectangle in our sums
with trapezoids. Since the area of a trapezoid is (length of base)(average of lengths of
heights), we end up with the estimate

T(f.n) = Sy Tt O A = §(S0L flaim)Aa + DI, (i) Ac)

= 3(L(f,n) + R(f,n))  (trapezoid estimate)

If f is close to being linear on each subinterval (i.e., f” is not too big), this gives a
better estimate of the integral than either of L or R alone. In fact, if | f”(z)| < K on [a, b],
then

b—a
‘f f da:— ( ,n)\<K(12ng

This, in practice, leads to very good estimates for the integrals of functions we don’t
know how to find antiderivatives for. Even for functions that we can find antiderivatives
for, this gives a practical way to approximate the values of those antiderivatives (think,
e.g., of arcsinx), by approximating the corresponding definite integrals.

Improper integrals
b
Fund Thm of Cale: / f(z) dz = F(b) — F(a), where F'(z) = f(z)

Problems: a = —o0, b = o0o; f blows up at a or b or somewhere in between
integral is“improper”; usual technique doesn’t work. Solution to this:

/aoof(x)da::blilgofabf(x)dx / f(x) dor = hm/f ) da

(blow up at a) /b f(z) dz = lim f( ) dz = lim / f(x

r—at J, e—0Tt



snnllarly for blowup at b (or both!))

b—e
/ flx) dz = hm / flx) dz = li%l+ f(x) dz

b r b
(blows up at ¢ (b/w a and b)) / f(x) dz = lim f(z) dz + lim f(x) dz

r—c Jq s—ct s
The integral converges if (all of the) limit(s) are finite; otherwise, we say that the integral
diverges.
Comparison: 0 < f(x) < g(x) for all ;

if/ g(x) dx converges, so does / f(z) dz

if/ f(x) dz diverges, so does / g(z) dz

Applications of integration

Volume by slicing. To calculate volume, aprroximate region by objects whose volume
we can calculate.

Volume = " (volumes of ‘cylinders’)

= Y (area of base)(height)
= Y (area of cross-section)Ax; .
right
So volume = / (area of cross section) dz
left

Solids of revolution: disks and washers. Solid of revolution: take a region in the
plane and revolve it around an axis in the plane.

take cross-sections perpendicular to
axis of revolution;
cross-section = disk (area=mr?)
or washer (area=mR? — 71?)
rotate around z-axis: write r
(and R) as functions of z,
integrate dx
rotate around y-axis: write r
(and R) as functions of v,
integrate dy

region

C
rotate

top

A(x) dz or volume = / Ay) dy

bottom

right
Otherwise, everything is as before: volume = /
left
The same is true if axis is parallel to z— or y—axis; r and R just change
(we add a constant).



Cylindrical shells. Different picture, same volume! Solid of revolution; use cylinders
centered on the axis of revolution. The intersection is a cylinder, with area = (circumfer-
ence)(height) = 27nrh

top

right
volume = / (area of cylinder) dz  or / (area of cylinder) dy !
left b

ottom

region

C
rotate

revolve around vertical line:
integrate dx

revolve around horizontal line:
integrate dy

Ex: region in plane between
y = 4z, y = 2, revolved around y-axis

4
left=0, right=4, r = x, h = (4 — 2?) volume = / 2rx(dr — %) de
0

Arclength. Idea: approximate a curve by lots of short line segments; length of curve ~
sum of lengths of line segments.

Line segment between (c¢;, f(¢;)) and (¢;j+1, f(ci+1)) has length

\/1 + (f(Ci—i—l) — f(Cz) )2 . (Ci—l—l — Ci) ~+\/1+ (f’(ci))Q Az,

Ci+1 — G

right

So length of curve = / V14 (f'(2))? dx

left

The problem: integrating \/1 + (f’(x))2! Sometimes, 1+ (f’(z))? turns out to be a perfect
square.....

More generally, we can work with parametric curves (x(t),y(t)) [think: ¢ = time, so we
are travelling around the z-y plane].

Arclength: we approximate it the same way, as a sum of lengths of line seqments that
approximate the curve. Each segment has length

V(A2)? + (Ay)? = /(Az/A1)? + (Ay/At)2At ~ /(2/(1)? + (v (1))? dt

b
so the length of the curve is / V(@ ()2 + (y/ ()2 dt



