

Math 107 Sections 151-155

Topics for the first exam

Integration

Basic list:

$$\begin{aligned}
 \int x^n \, dx &= \frac{x^{n+1}}{n+1} + C \quad (\text{provided } n \neq -1) & \int 1/x \, dx &= \ln|x| + C \\
 \int \sin(kx) \, dx &= \frac{-\cos(kx)}{k} + C & \int \cos(kx) \, dx &= \frac{\sin(kx)}{k} + C \\
 \int \sec^2 x \, dx &= \tan x + C & \int \csc^2 x \, dx &= -\cot x + C \\
 \int \sec x \tan x \, dx &= \sec x + C & \int \csc x \cot x \, dx &= -\csc x + C \\
 \int \tan x \, dx &= \ln|\sec x| + C & \int \sec x \, dx &= \ln|\sec x + \tan x| + C \\
 \int \cot x \, dx &= \ln|\sin x| + C & \int \csc x \, dx &= -\ln|\csc x + \cot x| + C \\
 \int e^x \, dx &= e^x + C & \int \frac{dx}{\sqrt{a^2-x^2}} &= \text{Arcsin}\left(\frac{x}{a}\right) + C \\
 \int \frac{dx}{x^2+a^2} &= \frac{1}{a} \text{Arctan}\left(\frac{x}{a}\right) + C & \int \frac{dx}{|x|\sqrt{x^2-a^2}} &= \frac{1}{a} \text{Arcsec}\left(\frac{x}{a}\right) + C
 \end{aligned}$$

Basic integration rules: for $k=\text{constant}$,

$$\int k \cdot f(x) \, dx = k \int f(x) \, dx \quad \int (f(x) \pm g(x)) \, dx = \int f(x) \, dx \pm \int g(x) \, dx$$

The Fundamental Theorem of Calculus

$\int_a^x f(t) \, dt = F(x)$ is a function of x . $F(x)$ = the area under graph of f , from a to x .

FTC 2: If f is cts, then $F'(x) = f(x)$ (F is an antideriv of f !)

Since any two antiderivatives differ by a constant, and $F(b) = \int_a^b f(t) \, dt$, we get

FTC 1: If f is cts, and F is an antideriv of f , then $\int_a^b f(x) \, dx = F(b) - F(a) = F(x) \Big|_a^b$

Integration by substitution. The idea: reverse the chain rule!

$g(x) = u$, then $\frac{d}{dx} f(g(x)) = \frac{d}{dx} f(u) = f'(u) \frac{du}{dx}$, so $\int f'(u) \frac{du}{dx} \, dx = \int f'(u) \, du = f(u) + C$

$\int f(g(x))g'(x) \, dx$; set $u = g(x)$, then $du = g'(x) \, dx$,

so $\int f(g(x))g'(x) \, dx = \int f(u) \, du$, where $u = g(x)$

Example: $\int x(x^2 - 3)^4 \, dx$; set $u = x^2 - 3$, so $du = 2x \, dx$. Then

$$\int x(x^2 - 3)^4 \, dx = \frac{1}{2} \int (x^2 - 3)^4 2x \, dx = \frac{1}{2} \int u^4 \, du \Big|_{u=x^2-3} = \frac{1}{2} \frac{u^5}{5} + C \Big|_{u=x^2-3} = \frac{(x^2-3)^5}{10} + C$$

The three most important points:

1. Make sure that you calculate (and then set aside) your du before doing step 2!
2. Make sure everything gets changed from x 's to u 's
3. **Don't** push x 's through the integral sign! They're not constants!

We can use u -substitution directly with a definite integral, provided we remember that

$\int_a^b f(x) \, dx$ really means $\int_{x=a}^{x=b} f(x) \, dx$, and we remember to change all x 's to u 's!

Ex: $\int_1^2 x(1+x^2)^6 \, dx$; set $u = 1+x^2$, $du = 2x \, dx$. when $x = 1$, $u = 2$; when $x = 2$, $u = 5$;

$$\text{so } \int_1^2 x(1+x^2)^6 \, dx = \frac{1}{2} \int_2^5 u^6 \, du = \dots$$

Integration by parts

Product rule: $d(uv) = (du)v + u(dv)$

reverse: $\int u \, dv = uv - \int v \, du$

Ex: $\int x \cos x \, dx$: set $u=x$, $dv=\cos x \, dx$ $du=dx$, $v = \sin x$ (or any other antiderivative)

So: $\int x \cos x = x \sin x - \int \sin x \, dx = \dots$

special case: $\int f(x) \, dx$; $u = f(x)$, $dv=dx$ $\int f(x) \, dx = xf(x) - \int xf'(x) \, dx$

Ex: $\int \text{Arcsin } x \, dx = x \text{ Arcsin } x - \int \frac{x}{\sqrt{1-x^2}} = \dots$

The basic idea: integrate part of the function (a part that you can), differentiate the rest.

Goal: reach an integral that is “nicer”.

Ex: $\int x^3 \ln x \, dx = (x^4/4) \ln x - \int (x^4/4)(1/x) \, dx = \dots$

Trig substitution

Idea: get rid of square roots, by turning the stuff inside into a perfect square!

$\sqrt{a^2 - x^2}$: set $x = a \sin u$. $dx = a \cos u \, du$, $\sqrt{a^2 - x^2} = a \cos u$

Ex: $\int \frac{1}{x^2 \sqrt{1-x^2}} \, dx = \int \frac{\cos u}{\sin^2 u \cos u} \, du \Big|_{x=\sin u} = \dots$

$\sqrt{a^2 + x^2}$: set $x = a \tan u$. $dx = a \sec^2 u \, du$, $\sqrt{a^2 + x^2} = a \sec u$

Ex: $\int \frac{1}{(x^2 + 4)^{3/2}} \, dx = \int \frac{2 \sec^2 u}{(2 \sec u)^3} \, du \Big|_{x=2 \tan u} = \dots$

$\sqrt{x^2 - a^2}$: set $x = a \sec u$. $dx = a \sec u \tan u \, du$, $\sqrt{x^2 - a^2} = a \tan u$

Ex: $\int \frac{1}{x^2 \sqrt{x^2 - 1}} \, dx = \int \frac{\sec u \tan u}{\sec^2 u \tan u} \, du \Big|_{x=\sec u} = \dots$

Undoing the “ u -substitution”: use right triangles! (Draw a right triangle!)

Ex: $x = a \sin u$, then angle u has opposite $= x$, hypotenuse $= a$, so adjacent $= \sqrt{a^2 - x^2}$.
So $\cos u = (\sqrt{a^2 - x^2})/a$, $\tan u = x/\sqrt{a^2 - x^2}$, etc.

Trig integrals: What trig substitution usually leads to!

$$\int \sin^n x \cos^m x \, dx$$

If n is odd, keep one $\sin x$ and turn the others, in pairs, into $\cos x$
(using $\sin^2 x = 1 - \cos^2 x$), then do a u -substitution $u = \cos x$.

If m is odd, reverse the roles of $\sin x$ and $\cos x$.

If both are even, turn the $\sin x$ into $\cos x$ (in pairs) and use the double angle formula

$$\cos^2 x = \frac{1}{2}(1 + \cos(2x))$$

This will convert $\cos^m x$ into a bunch of *lower powers* of $\cos(2x)$;
odd powers can be dealt with by substitution, even powers by another application of the angle doubling formula!

$$\int \sec^n x \tan^m x \, dx = \int \frac{\sin^m x}{\cos^{n+m} x} \, dx$$

If n is even, set two of them aside and convert the rest to $\tan x$

using $\sec^2 x = \tan^2 x + 1$, and use $u = \tan x$.

If m is *odd*, set one each of $\sec x$, $\tan x$ aside, convert the rest of the $\tan x$ to $\sec x$ using $\tan^2 x = \sec^2 x - 1$, and use $u = \sec x$.

If n is odd and m is even, convert all of the $\tan x$ to $\sec x$ (in pairs), leaving a bunch of powers of $\sec x$. Then use the *reduction formula*:

$$\int \sec^n x \, dx = \frac{1}{n-1} \sec^{n-2} x \tan x + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx$$

At the end, reach $\int \sec^2 x \, dx = \tan x + C$ or $\int \sec x \, dx = \ln |\sec x + \tan x| + C$

A little “trick” worth knowing:

the substitution $u = \frac{\pi}{2} - x$, since $\sin(\frac{\pi}{2} - x) = \cos x$ and $\cos(\frac{\pi}{2} - x) = \sin x$, will *reverse* the roles of $\sin x$ and $\cos x$,

so will turn $\cot x$ into $\tan u$ and $\csc x$ into $\sec u$. So, for example, the integral

$$\int \frac{\cos^4 x}{\sin^7 x} \, dx = \int \csc^3 x \cot^4 x \, dx, \text{ which our techniques don't cover,}$$

becomes $\int \sec^3 u \tan^4 u \, du$, which our techniques do cover.

Partial fractions

rational function = quotient of polynomials

Idea: integrate by writing function as sum of simpler functions

Procedure: $f(x) = p(x)/q(x)$

(0): arrange for $\deg(p) < \deg(q)$; do long division if it isn't

(1): factor $q(x)$ into linear and irreducible quadratic factors

(2): group common factors together as powers

(3a): for each group $(x - a)^n$ add together:
$$\frac{a_1}{x - a} + \cdots + \frac{a_n}{(x - a)^n}$$

(3b): for each group $(ax^2 + bx + c)^n$ add together:

$$\frac{a_1 x + b_1}{ax^2 + bx + c} + \cdots + \frac{a_n x + b_n}{(ax^2 + bx + c)^n}$$

(4) set $f(x) =$ sum of all sums; solve for the ‘undetermined’ coefficients

put sum over a common denominator ($=q(x)$); set numerators equal.

always works: multiply out, group common powers, set coeffs of the two polys equal

Ex: $x + 3 = a(x - 1) + b(x - 2) = (a + b)x + (-a - 2b)$; $1 = a + b$, $3 = -a - 2b$

linear term $(x - a)^n$: set $x = a$, will allow you to solve for a coefficient

if $n \geq 2$, take derivatives of both sides! set $x=a$, gives another coeff.

$$\begin{aligned} \text{Ex: } \frac{x^2}{(x-1)^2(x^2+1)} &= \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{Cx+D}{x^2+1} \\ &= \frac{A(x-1)(x^2+1) + B(x^2+1) + (Cx+D)(x-1)^2}{(x-1)^2(x^2+1)} = \dots \end{aligned}$$

Numerical Integration

Sometimes (most times?) the Fundamental Theorem of Calculus won't help us to compute a definite integral; we can't find an antiderivative. So we need to fall back on the definition:

$$\sum_{i=1}^n f(c_i) \Delta x_i \text{ approximates } \int_a^b f(x) dx,$$

where the interval $[a, b]$ is cut into n pieces of length $\Delta x_1, \dots, \Delta x_n$, and c_i lies in the i -th subinterval

Typically, for convenience, we choose the subintervals to have the same length $\Delta x_i = \Delta x = \frac{b-a}{n}$, and make "standard" choices of elements in the i -th subinterval $[x_{i-1}, x_i]$:

$$L(f, n) = \sum_{i=1}^n f(x_{i-1}) \Delta x \quad (\text{left endpoint estimate})$$

$$R(f, n) = \sum_{i=1}^n f(x_i) \Delta x \quad (\text{right endpoint estimate})$$

$$M(f, n) = \sum_{i=1}^n f\left(\frac{x_{i-1}+x_i}{2}\right) \Delta x \quad (\text{midpoint estimate})$$

In the end though, each of these is throwing out a lot of information, since it approximates f on an interval by a constant. We can do better, taking into account more information about the function f , by approximating f by functions that better "fit" f on a subinterval, whose integrals we know how to compute.

We focus on linear functions: we replace f on each subinterval by the linear function having the same values at the endpoints. This essentially replaces a rectangle in our sums with trapezoids. Since the area of a trapezoid is (length of base)(average of lengths of heights), we end up with the estimate

$$\begin{aligned} T(f, n) &= \sum_{i=1}^n \frac{f(x_{i-1})+f(x_i)}{2} \Delta x = \frac{1}{2}(\sum_{i=1}^n f(x_{i-1}) \Delta x + \sum_{i=1}^n f(x_i) \Delta x) \\ &= \frac{1}{2}(L(f, n) + R(f, n)) \quad (\text{trapezoid estimate}) \end{aligned}$$

If f is close to being linear on each subinterval (i.e., f'' is not too big), this gives a better estimate of the integral than either of L or R alone. In fact, if $|f''(x)| \leq K$ on $[a, b]$, then

$$|\int_a^b f(x) dx - T(f, n)| \leq K \frac{(b-a)^3}{12n^2}$$

This, in practice, leads to very good estimates for the integrals of functions we don't know how to find antiderivatives for. Even for functions that we can find antiderivatives for, this gives a practical way to approximate the values of those antiderivatives (think, e.g., of $\arcsin x$), by approximating the corresponding definite integrals.

Improper integrals

Fund Thm of Calc: $\int_a^b f(x) dx = F(b) - F(a)$, where $F'(x) = f(x)$

Problems: $a = -\infty, b = \infty$; f blows up at a or b or somewhere in between
integral is "improper"; usual technique doesn't work. Solution to this:

$$\int_a^\infty f(x) dx = \lim_{b \rightarrow \infty} \int_a^b f(x) dx \quad \int_{-\infty}^b f(x) dx = \lim_{a \rightarrow -\infty} \int_a^b f(x) dx$$

$$(\text{blow up at } a) \int_a^b f(x) dx = \lim_{r \rightarrow a^+} \int_r^b f(x) dx = \lim_{\epsilon \rightarrow 0^+} \int_{a+\epsilon}^b f(x) dx$$

(similarly for blowup at b (or both!))

$$\int_a^b f(x) \, dx = \lim_{s \rightarrow b^-} \int_a^s f(x) \, dx = \lim_{\epsilon \rightarrow 0^+} \int_a^{b-\epsilon} f(x) \, dx$$

$$(\text{blows up at } c \text{ (b/w } a \text{ and } b\text{)}) \int_a^b f(x) \, dx = \lim_{r \rightarrow c^-} \int_a^r f(x) \, dx + \lim_{s \rightarrow c^+} \int_s^b f(x) \, dx$$

The integral converges if (all of the) limit(s) are finite; otherwise, we say that the integral diverges.

Comparison: $0 \leq f(x) \leq g(x)$ for all x ;

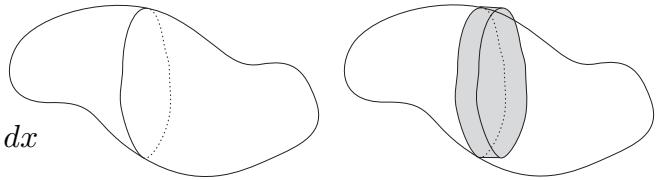
if $\int_a^\infty g(x) \, dx$ converges, so does $\int_a^\infty f(x) \, dx$
 if $\int_a^\infty f(x) \, dx$ diverges, so does $\int_a^\infty g(x) \, dx$

Applications of integration

Volume by slicing. To calculate volume, approximate region by objects whose volume we can calculate.

$$\begin{aligned} \text{Volume} &\approx \sum(\text{volumes of 'cylinders'}) \\ &= \sum(\text{area of base})(\text{height}) \\ &= \sum(\text{area of cross-section})\Delta x_i. \end{aligned}$$

$$\text{So volume} = \int_{left}^{right} (\text{area of cross section}) \, dx$$



Solids of revolution: disks and washers. Solid of revolution: take a region in the plane and revolve it around an axis in the plane.

take cross-sections perpendicular to

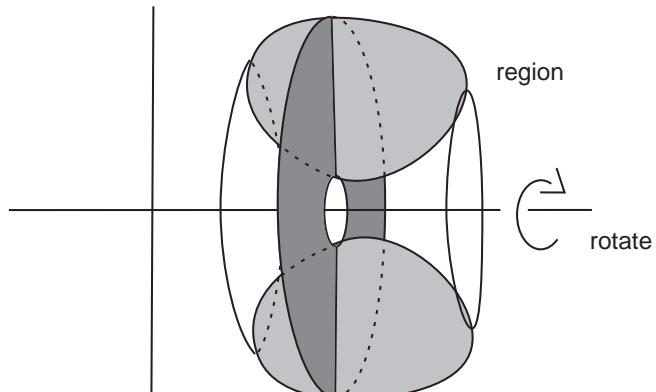
axis of revolution;

cross-section = disk (area = πr^2)

or washer (area = $\pi R^2 - \pi r^2$)

rotate around x -axis: write r (and R) as functions of x , integrate dx

rotate around y -axis: write r (and R) as functions of y , integrate dy



Otherwise, everything is as before: volume = $\int_{left}^{right} A(x) \, dx$ or volume = $\int_{bottom}^{top} A(y) \, dy$

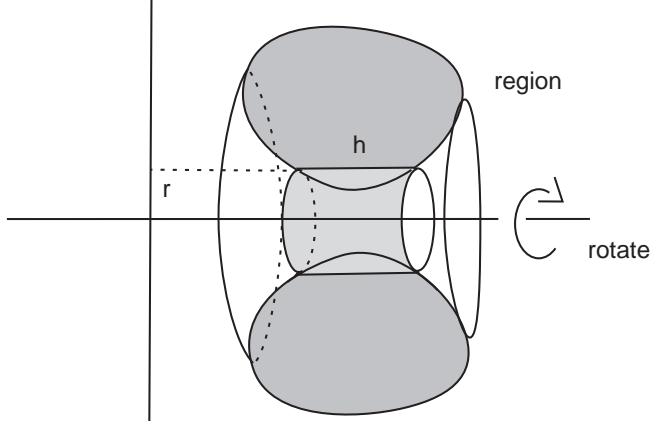
The same is true if axis is parallel to x - or y -axis; r and R just change (we add a constant).

Cylindrical shells. Different picture, same volume! Solid of revolution; use cylinders centered on the axis of revolution. The intersection is a cylinder, with area = (circumference)(height) = $2\pi rh$

$$\text{volume} = \int_{left}^{right} (\text{area of cylinder}) \, dx \quad \text{or} \quad \int_{bottom}^{top} (\text{area of cylinder}) \, dy \quad !$$

revolve around vertical line:
integrate dx
revolve around horizontal line:
integrate dy

Ex: region in plane between
 $y = 4x$, $y = x^2$, revolved around y -axis



Arclength. Idea: approximate a curve by lots of short line segments; length of curve \approx sum of lengths of line segments.

Line segment between $(c_i, f(c_i))$ and $(c_{i+1}, f(c_{i+1}))$ has length

$$\sqrt{1 + \left(\frac{f(c_{i+1}) - f(c_i)}{c_{i+1} - c_i}\right)^2} \cdot (c_{i+1} - c_i) \approx \sqrt{1 + (f'(c_i))^2} \cdot \Delta x_i$$

$$\text{So length of curve} = \int_{left}^{right} \sqrt{1 + (f'(x))^2} \, dx$$

The problem: integrating $\sqrt{1 + (f'(x))^2}$! Sometimes, $1 + (f'(x))^2$ turns out to be a perfect square.....

More generally, we can work with *parametric curves* $(x(t), y(t))$ [think: t = time, so we are travelling around the x - y plane].

Arclength: we approximate it the same way, as a sum of lengths of line segments that approximate the curve. Each segment has length

$$\sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(\Delta x/\Delta t)^2 + (\Delta y/\Delta t)^2} \Delta t \approx \sqrt{(x'(t))^2 + (y'(t))^2} \, dt$$

so the length of the curve is $\int_a^b \sqrt{(x'(t))^2 + (y'(t))^2} \, dt$