
Math 107

Topics for the second exam

(Technically, everything covered on the first exam plus...)

Exponential growth and decay

In many situations, the rate of change of some quantity depends in a known way on the values of the
quantity. A basic example is radioactive decay: if f(t) is the amount of isotope at time t, then f ′(t) = kf(t)
for some constant k (which depends upon the isotope). Such equation is called a differential equation, since it
involves an (unknown) function as well as its derivative.

The equation for radiactive decay is one of a class of equations called separable equations. A differential
equation is separable if it can be written as y′ = A(t)B(y)

This allows us to ‘separate the variables’ and integrate with respect to dy and dt to get a solution:
1

B(y)
dy = A(t) dt ; integrate both sides

In the end, our solutions look like F (y) = G(t) + c, so it defines y implicitly as a function of t , rather
than explicitly. In some cases we can invert F to get an explicit solution, but often we cannot.

For example, the separable equation y′ = ty2 , y(1) = 2 has solution

∫

dy

y2
=

∫

t dt + c

so solving the integrals we get (−1/y) = (t2/2) + c, or y = −2/(t2 + 2c) ; setting y = 2 when t = 1 gives
c = −1 .

Applying this approach to a radioactive decay problem, y′ = ky, yields y(t) = Cekt, where the constant
of integration C can be determined by setting t = 0; y0 = y(0) = Ce0 = C. So y(t) = y0e

kt. The constant k

can then be determined if we know the value of y(t) for any other time t0; k =
1

t0
ln[y(t0)/y0] .

Newton’s Law of Cooling: This states that the rate of change of the temperature T (t) of an object is
proportional to the difference between its temperature and the ambient temperature of the air around it. The
constant of proportionality depends upon the particular object (and the medium, e.g., air or water) it is in.
In other words,

T ′ = k(A − T )

Since a cold object will warm up, and a warm object will cool down, this means that the constant k
should be positive. This equation is separable, and we can find the solution

T (t) = A + (T (0) − A)e−kt

Typically, k is not given, but can be determined by knowing the temperature at some other time t1, by
plugging into the equation above and solving for k.

Infinite sequences and series

Limits of sequences of numbers

A sequence is: a string of numbers; a function f :N→R; write f(n) = an
an = n-th term of the sequence

Basic question: convergence/divergence lim
n→∞

an = L (or an → L) if

eventually all of the an are always as close to L as we like, i.e. for any ε > 0, there is an N so
that if n ≥ N then |an − L| < ε Ex.: an = 1/n converges to 0 ; can always choose N=1/ε

an = (−1)n diverges; terms of the sequence never settle down to a single number

If an is increasing (an+1 ≥ an for every n) and bounded from above
(an ≤ M for every n, for some M) , then an converges (but not necessarily to M !)

limit is smallest number bigger than all of the terms of the sequence

Limit theorems for sequences

Idea: limits of sequences are a lot like limits of functions. If an → L and bn → M , then
(an + bn → L + M (an − bn) → L − M (anbn) → LM , and

(an/bn) → L/M (provided M , all bn are 6= 0)

Sqeeze play theorem: if an ≤ bn ≤ cn (for all n large enough) and an → L and cn → L , then bn → L
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If an → L and f :R→R is continuous at L, then f(an) → f(L)

if an = f(n) for some function f :R→R and lim
x→∞

f(x) = L , then an → L

(allows us to use L’Hopital’s Rule!)

Another basic list: (x = fixed number, k = konstant)
1

n
→ 0 k → k x

1

n → 1 n
1

n → 1 (1 +
x

n
)n → ex

xn

n!
→ 0 xn →

{

0, if |x| < 1 ; 1, if x = 1 ; diverges, otherwise
}

Infinite series

An infinite series is an infinite sum of numbers

a1 + a2 + a3 + . . . =

∞
∑

n=1

an (summation notation)

n-th term of series = an ; N -th partial sum of series = sN =

N
∑

n=1

an

An infinite series converges if the sequence of partial sums
{

sN

}

∞

N=1
converges

We may start the series anywhere:

∞
∑

n=0

an,

∞
∑

n=1

an,

∞
∑

n=3437

an, etc. ;

convergence is unaffected (but the number it adds up to is!)

Ex. geometric series: an = arn ;
∞
∑

n=0

an =
a

1 − r
if |r| < 1; otherwise, the series diverges.

Ex. Telescoping series: partial sums sN ‘collapse’ to a simple expression

E.g.
∞
∑

n=1

1

n(n + 2)
=

∞
∑

n=1

1

2

( 1

n
−

1

n + 2

)

; sN =
1

2

(1

1
+

1

2
−

( 1

N + 1
+

1

N + 2

))

n-th term test: if
∞
∑

n=1

an converges, then an → 0

So if the n-th terms don’t go to 0, then

∞
∑

n=1

an diverges

Basic limit theorems: if

∞
∑

n=1

an and

∞
∑

n=1

bn converge, then

∞
∑

n=1

(an + bn)=

∞
∑

n=1

an+

∞
∑

n=1

bn

∞
∑

n=1

(an − bn)=

∞
∑

n=1

an-

∞
∑

n=1

bn

∞
∑

n=1

(kan)= k
∞
∑

n=1

an Truncating a series:
∞
∑

n=1

an =
∞
∑

n=N

an +
N−1
∑

n=1

an

Comparison tests

Again, think

∞
∑

n=1

an , with an ≥ 0 all n

Convergence depends only on partial sums sN being bounded
One way to determine this: compare series with one we know converges or diverges

Comparison test: If bn ≥ an ≥ 0 for all n (past a certain point), then

if

∞
∑

n=1

bn converges, so does

∞
∑

n=1

an ; if

∞
∑

n=1

an diverges, so does

∞
∑

n=1

bn

(i.e., smaller than a convergent series converges; bigger than a divergent series diverges)

More refined: Limit comparison test: an and bn ≥ 0 for all n,
an

bn
→ L

If L 6= 0 and L 6= ∞, then
∑

an anf
∑

bn either both converge or both diverge
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If L = 0 and
∑

bn converges, then so does
∑

an; If L = ∞ and
∑

bn diverges, then so does
∑

an.

(Why? eventually (L/2)bn ≤ an ≤ (3L/2)bn ; so can use comparison test.)

Ex:
∑

1/(n3 − 1) converges; L-comp with
∑

1/n3 ;
∑

n/3n converges; L-comp with
∑

1/2n

∑

1/[n ln(n2 + 1)] diverges; L-comp with
∑

1/(n lnn)

The integral test

Idea:
∞
∑

n=1

an with an ≥ 0 all n, then the partial sums

{sN}∞N=1 forms an increasing sequence; so converges exactly when bounded from above

If (eventually) an = f(n) for a decreasing function f : [a,∞) →R, then
∫ N+1

a+1

f(x) dx ≤ sN =

N
∑

n=a

an ≤

∫ N

a

f(x) dx

so

∞
∑

n=a

an converges exactly when

∫

∞

a

f(x) dx converges

Ex:
∞
∑

n=1

1

np
converges exactly when p > 1 (p-series)

Absolute convergence and alternating series

A series
∑

an converges absolutely if
∑

|an| converges. If
∑

|an| converges then
∑

an converges.

A series which converges but does not converge absolutely is called conditionally convergent.

An alternating series has the form
∑

(−1)nan with an ≥ 0 for all n.

If the sequence an is decreasing and has limit 0, then the alternating series test states that
∑

(−1)nan

converges. For example,
∑

∞

n=0(−1)n/(n + 1) converges, but not absolutely, so it is conditionally convergent.

The ratio and root tests

Previous tests have you compare your series with something else (another series,
an improper integral); these tests compare a series with itself (sort of)

Ratio Test:
∑

an, an 6= 0 all n; lim
n→∞

∣

∣

an+1

an

∣

∣ = L

If L < 1 then
∑

an converges absolutely If L > 1, then
∑

an diverges

If L = 1, then try something else!

Root Test:
∑

an, lim
n→∞

|an|
1/n = L

If L < 1 then
∑

an converges absolutely If L > 1, then
∑

an diverges

If L = 1, then try something else!

Ex:
∑ 4n

n!
converges by the ratio test

∑ n5

nn
converges by the root test

Power series

Idea: turn a series into a function, by making the terms an depend on x
replace an with anxn ; series of powers

∞
∑

n=0

anxn = power series centered at 0

∞
∑

n=0

an(x − a)n = power series centered at a

Big question: for what x does it converge? Solution from ratio test: lim
∣

∣

∣

an+1

an

∣

∣

∣
= L, set R =

1

L

then

∞
∑

n=0

an(x − a)n converges absolutely for |x − a| < R and diverges for |x − a| > R ;

R = radius of convergence Ex.:

∞
∑

n=0

xn =
1

1 − x
; conv. for |x| < 1
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Why care about power series?

Idea: partial sums

n
∑

k=0

akxk are polynomials;

if f(x)=

∞
∑

n=0

anxn, then the poly’s make good approximations for f

Differentiation and integration of power series

Idea: if you differentiate or integrate each term of a power series, you get a power
series which is the derivative or integral of the original one.

If f(x) =

∞
∑

n=0

an(x − a)n has radius of conv R,

then so does g(x) =
∞
∑

n=1

nan(x − a)n−1, and g(x) = f ′(x)

and so does g(x) =

∞
∑

n=0

an

n + 1
(x − a)n+1, and g′(x) = f(x)

Ex: f(x) =

∞
∑

n=0

xn

n!
, then f ′(x) = f(x) , so (since f(0) = 1) f(x) = ex =

∞
∑

n=0

xn

n!

Ex.:
1

1 − x
=

∞
∑

n=0

xn, so − ln(1 − x) =
∞
∑

n=0

xn+1

n + 1
(for |x| < 1), so (replacing x with −x)

ln(x + 1) =
∞
∑

n=0

(−1)nxn+1

n + 1
, so (replacing x with x − 1) ln(x) =

∞
∑

n=0

(−1)n(x − 1)n+1

n + 1

Ex:. arctanx =

∫

1

1 − (−x2)
dx =

∫ ∞
∑

n=0

(−x2)n dx =

∞
∑

n=0

(−1)nx2n+1

2n + 1
(for |x| < 1)

Taylor series

Idea: start with function f(x), find power series for it.

If f(x) =
∞
∑

n=0

an(x − a)n, then (term by term diff.) f (n)(a) = n!an ; So an =
f (n)(a)

n!

Starting with f , define P (x) =
∞
∑

n=0

f (n)(a)

n!
(x − a)n , the Taylor series for f , centered at a.

Pn(x) =

n
∑

k=0

f (k)(a)

k!
(x − a)k , the n-th Taylor polynomial for f .

Ex.: f(x) = sin x, then P (x) =
∞
∑

n=0

(−1)n

(2n + 1)!
x2n+1

Big questions: Is f(x) = P (x) ? (I.e., does f(x) − Pn(x) tend to 0 ?)
If so, how well do the Pn’s approximate f ? (I.e., how small is f(x) − Pn(x) ?)

Error estimates

f(x) =

∞
∑

n=0

f (n)(a)

n!
(x − a)n

means that the value of f at a point x (far from a) can be determined just from the behavior of f near
a (i.e., from the derivs. of f at a). This is a very powerful property, one that we wouldn’t ordinarily expect
to be true. The amazing thing is that it often is:

P (x, a) =
∞
∑

n=0

f (n)(a)

n!
(x − a)n ; Pn(x, a) =

n
∑

k=0

f (k)(a)

k!
(x − a)k ;
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Rn(x, a)= f(x) − Pn(x, a) = n-th remainder term = error in using Pn to approximate f
Taylor’s remainder theorem : estimates the size of Rn(x, a)

If f(x) and all of its derivatives (up to n + 1) are continuous on [a, b], then

f(b) = Pn(b, a) +
f (n+1)(c)

(n + 1)!
(b − a)n+1 , for some c in [a, b]

i.e., for each x, Rn(x, a) =
f (n+1)(c)

(n + 1)!
(x − a)n+1 , for some c between a and x

so if |F (n+1)(x)| ≤ M for every x in [a, b], then |Rn(x, a)| ≤
M

(n + 1)!
(x − a)n+1 for every x in [a, b]

Ex.: f(x)=sin x, then |f (n+1)(x)| ≤ 1 for all x, so |Rn(x, 0)| ≤
|x|n+1

(n + 1)!
→ 0 as n → ∞

so sinx =

∞
∑

n=0

(−1)n

(2n + 1)!
x2n+1 Similarly, cos x =

∞
∑

n=0

(−1)n

(2n)!
x2n

Use Taylor’s remainder to estimate values of functions:

ex =

∞
∑

n=0

(x)n

(n)!
, so e=e1=

∞
∑

n=0

1

(n)!

|Rn(1, 0)| =
f (n+1)(c)

(n + 1)!
=

ec

(n + 1)!
≤

e1

(n + 1)!
≤

4

(n + 1)!
since e < 4 (since ln(4) > (1/2)(1) + (1/4)(2) = 1) (Riemann sum for integral of 1/x)

so since
4

(13 + 1)!
= 4.58×10−11,

e = 1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
+ · · ·+

1

13!
, to 10 decimal places.

Other uses: if you know the Taylor series, it tells you the values of the derivatives at the center.

Ex.: ex=
∞
∑

n=0

(x)n

(n)!
, so xex =

∞
∑

n=0

(x)n+1

(n)!
, so

the 15th deriv of xex , at 0, is 15!(coeff of x15) =
15!

14!
= 15

Substitutions: new Taylor series out of old ones

Ex. sin2 x =
1 − cos(2x)

2
=

1

2
(1 −

∞
∑

n=0

(−1)n(2x)2n

(2n)!

=
1

2
(1 − (1 −

(2x)2

2!
+

(2x)4

4!
−

(2x)6

6!
+ · · · =

2x2

2!
−

23x4

4!
+

25x6

6!
−

27x8

8!
+ · · ·

Integrate functions we can’t handle any other way:

Ex.: ex2

=
∞
∑

n=0

(x)2n

(n)!
, so

∫

ex2

dx =
∞
∑

n=0

(x)2n+1

n!(2n + 1)
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