Math 107 Project: Balancing on the point of a pin

Assigned: 2/26/2010

This project explores the mathematics behind and applicatons of the *center of mass* (or *center of gravity*) of an object. In many physical situations, an object behaves as if all of its mass were concentrated at a single point, called the center of mass of the object. For example, an object allowed to rotate freely will rotate around a line through its center of mass; an object thrown through the air, in the absence of air resistance, will have its center of mass trace out the perfect parabolic arc that physics predicts. See, for example,

http://www.schooltube.com/video/ef4699826e6448bf9703/Elmo-Center-of-Mass for experiments carried out with an Elmo doll! In this project we will focus on center of mass computations for an object modeled as a thin plate of uniform density shaped like a region R in the plane; under these hypotheses, the center of mass is usually called the *centroid* of the region R.

For a region R in the xy-plane having a line of reflection symmetry, the centroid will always lie along this line, a fact which can greatly simplify calculations of centroids. Knowlege of the centroid of a region, in turn, can greatly simplify other calculations; the Thoerem of Pappus states that when a region R of the plane is rotated in space around a line not meeting R, the volume of the resulting solid of revolution is equal to the area of R times the distance traveled by the centroid Runder the rotation. Our goal is to verify these observations and carry out a variety of computations.

Some basic material on centers of mass can be found in section 6.7 of our text, pages 437-442, which makes a good starting point for your studies. But be **aware**, the notation in the text is not rigorous, whereas the notation of this project is very rigorous. To simplify our work, we begin our study with a one dimensional object like a rod lying on the x-axis.

Part I: One-dimensional objects.

Assume that we have a system of n discrete masses m_k along the x-axis, each located at the coordinate x_k . The moment of each mass m_k is defined to be $m_k x_k$. The moment of the system about the origin is $M_0 = \sum_{k=1}^n m_k x_k$ and the total mass of the system is $M = \sum_{k=1}^n m_k$. The center of mass of this discrete system is defined by the point whose x-coordinate is \overline{x} , where

$$\overline{x} = \frac{\sum_{k=1}^{n} m_k x_k}{\sum_{k=1}^{n} m_k}.$$

The underlying physical intuition is that since (as you can check) $\sum_{k=1}^{n} m_k(\overline{x} - x_k) = 0$, where $(\overline{x} - x_k)$ is interpreted as the "signed" distance from x_k to \overline{x} , the system of masses will "balance" (neither tip to the right nor to the left) at the center of mass. This is essentially the principle of the lever; a small mass far from the balance point can balance a larger mass close to the balance point but on the other side.

Your first task is to extend this notion to a solid rod of varying density.

Task 1: Consider a rod of length L meters lying on the interval [0, L] on the x-axis. Assume the rod's density is non-constant and given by $\rho(x)$ kg/m, $x \in [0, L]$. Your first task is to show that the center of mass of the rod is

$$\overline{x} = \frac{\int_0^L x \rho(x) dx}{\int_0^L \rho(x) dx}.$$

Idea: Partition the interval [0, L] via the regular partition $\{0 = x_0, x_1, x_2, \dots, x_n = L\}$, with $\Delta x = \frac{L}{n}$. Now, think of each piece of the rod lying on the kth segment $[x_{k-1}, x_k]$ as a discrete mass whose coordinate is any point of your choice, $z_k \in [x_{k-1}, x_k]$. Approximate \overline{x} as a quotient of two

Riemann sums, and let $n \to \infty$.

Task 2: Use your results in **Task 1** to find the center of mass of a 2-meter rod lying on the interval [0, 2] whose density is given by $\rho(x) = .01\sqrt{x+1}$ kg/m.

Part II: Two-dimensional objects.

Here, we extend the ideas developed for one-dimensional objects to find the center of mass (centroid) of a thin plate occupying a region R. To simplify the problem, we will assume the density of the plate is a constant, say $\rho kg/m^2$.

As in the one-dimensional case, suppose we have a discrete system of n masses m_k each located at a point (x_k, y_k) in the plane. We define M_x , the moment of the system about the x-axis by:

$$M_x = \sum_{k=1}^n m_k y_k.$$

Similarly, we define M_y , the moment of the system about the y-axis by: $M_y = \sum_{k=1}^n m_k x_k$. Also, the total mass of the system is given by $M = \sum_{k=1}^n m_k$. Finally, we define the center of mass of this discrete system to be the point $(\overline{x}, \overline{y})$, where

$$\overline{x} = \frac{M_y}{M} = \frac{\sum_{k=1}^n m_k x_k}{\sum_{k=1}^n m_k}, \quad \overline{y} = \frac{M_x}{M} = \frac{\sum_{k=1}^n m_k y_k}{\sum_{k=1}^n m_k}.$$

The intuition is, as before, that $\overline{x} - x_i$ represents the "signed" distance from the point (x_i, y_i) to the line $x = \overline{x}$; the condition $\sum m_i(\overline{x} - x_i) = 0$ (which follows, as before, from the formula above) ensures that the masses, if placed on a massless plate supported along the vertical line $x = \overline{x}$, will balance. The other condition ensures that the masses balance when supported along the horizontal line $y = \overline{y}$. The masses will therefore balance on the point of a pin placed at the center of mass: they will not tip left, right, "up" or "down".

Task 3: Your next task is to fill in the details behind the following computation. Assume we have a thin plate occupying a region R as shown. Also, assume the density of the plate is a constant $\rho kg/m^2$.

In order to find the centroid of the plate, we start by finding \overline{x} . We partition the interval [a, b] via the regular partition $\{a = x_0, x_1, x_2, \dots, x_n = b\}$, with $\Delta x = \frac{b-a}{n}$. This process results in dividing the plate into thin vertical strips which can be approximated as a rectangle of a small width Δx . Let $L(z_k)$ be the total length of the line segments of intersection of the vertical line $x = z_k$ with R, where $z_k \in [x_{k-1}, x_k]$ is any point of your choice. Now, we think of each vertical

strip of the plate as a discrete mass in the plane whose coordinate is (z_k, w_k) , for some $w_k \in \mathbb{R}$, which is irrelevant in the following calculations. Let us note that the mass of the kth vertical strip is given by: $m_k = (\text{density})(\text{area}) \approx \rho L(z_k) \Delta x$. So, by thinking of the whole plate as a discrete system of *n* masses $m_k \approx \rho L(z_k) \Delta x$ each located at a point (z_k, w_k) in the plane, we find

$$\overline{x} = \frac{M_y}{M} \approx \frac{\sum_{k=1}^n \rho z_k L(z_k) \Delta x}{\sum_{k=1}^n \rho L(z_k) \Delta x} = \frac{\sum_{k=1}^n z_k L(z_k) \Delta x}{\sum_{k=1}^n L(z_k) \Delta x}$$
$$\int_{-b}^{-b} x L(x) dx$$

By letting $n \to \infty$, we obtain the formula $\overline{x} = \frac{\int_a^{a} x L(x) dx}{\int_a^{b} L(x) dx}$.

Your task here is to fill in the details explaining why the formula for \overline{x} is valid. Also, you should carry out similar steps to obtain

$$\overline{y} = \frac{\int_c^d y S(y) dy}{\int_c^d S(y) dy},$$

where $S(w_k)$ is the total length of the line segments of intersection of the horizontal line $y = w_k$ with R.

Task 4: Explain why A(R), the area of the region R, is given by: $A(R) = \int_a^b L(x) \, dx = \int_c^d S(y) \, dy$. Hence, we have

$$\overline{x} = \frac{1}{A(R)} \int_{a}^{b} x L(x) dx, \quad \overline{y} = \frac{1}{A(R)} \int_{c}^{d} y S(y) dy.$$

Use this to explain why, if the region R has a vertical line of reflection symmetry x = A, then $\overline{x} = A = \frac{a+b}{2}$, and if R has a horizontal line of reflection symmetry y = B, then $\overline{y} = B$. [Hint: a line of symmetry tells us something about the functions L(x) or S(y).]

By computing L(x) and S(y) for specific examples, together with symmetry considerations, we can compute the centroids of a wide variety of regions in the plane:

Task 5: Compute the centroid of a thin plate occupying:

- (a): the disk $D = \{(x, y) : (x+2)^2 + y^2 \le 1\};$
- (b): the triangle with vertices (1,0), (5,0), and (4,4);
- (c): the region lying between the parabolas $y = 2x x^2$ and $y = 2x^2 4x$

Computations of centroids, especially by symmetry considerations, can aid us in other computations. For example, using the formula for the volume of a solid obtained by revolving a region Raround the line x = c, by cylindrical shells,

volume =
$$\int_{a}^{b} 2\pi |x - c| L(x) \, dx = \pm \int_{a}^{b} 2\pi (x - c) L(x) \, dx$$

= $\pm 2\pi (\int_{a}^{b} x L(x) \, dx - c \int_{a}^{b} L(x) \, dx) = \pm 2\pi (\overline{x} - c) A(R) = 2\pi |\overline{x} - c| A(R)$

and there is a similar computation for lines y = c. This establishes the *Theorem of Pappus*: the volume of a solid of revolution (a region R revolved around an axis in the plane which misses R) is equal to the area of the region R, A(R), times $2\pi |\overline{x} - c|$ (or, for horizontal lines, $2\pi |\overline{y} - c|$), the circumference of the circle traced out by the centroid of R.

Task 6: Use Pappus' Theorem to compute the volumes of the solids obtained by revolving each of the regions in Task 5 around the lines

(a):
$$x = -3$$
 (b): $y = 6$.