
Math 107 Project: Balancing on the point of a pin

Assigned: 2/26/2010 Due: 4/16/2010

This project explores the mathematics behind and applicatons of the center of mass (or center

of gravity) of an object. In many physical situations, an object behaves as if all of its mass were
concentrated at a single point, called the center of mass of the object. For example, an object
allowed to rotate freely will rotate around a line through its center of mass; an object thrown
through the air, in the absence of air resistance, will have its center of mass trace out the perfect
parabolic arc that physics predicts. See, for example,

http://www.schooltube.com/video/ef4699826e6448bf9703/Elmo-Center-of-Mass
for experiments carried out with an Elmo doll! In this project we will focus on center of mass
computations for an object modeled as a thin plate of uniform density shaped like a region R in
the plane; under these hypotheses, the center of mass is usually called the centroid of the region R.

For a region R in the xy-plane having a line of reflection symmetry, the centroid will always lie
along this line, a fact which can greatly simplify calculations of centroids. Knowlege of the centroid
of a region, in turn, can greatly simplify other calculations; the Thoerem of Pappus states that
when a region R of the plane is rotated in space around a line not meeting R, the volume of the
resulting solid of revolution is equal to the area of R times the distance traveled by the centroid R
under the rotation. Our goal is to verify these observations and carry out a variety of computations.

Some basic material on centers of mass can be found in section 6.7 of our text, pages 437-442,
which makes a good starting point for your studies. But be aware, the notation in the text is not
rigorous, whereas the notation of this project is very rigorous. To simplify our work, we begin our
study with a one dimensional object like a rod lying on the x-axis.

Part I: One-dimensional objects.

Assume that we have a system of n discrete masses mk along the x-axis, each located at the
coordinate xk. The moment of each mass mk is defined to be mkxk. The moment of the system
about the origin is M0 =

∑n

k=1
mkxk and the total mass of the system is M =

∑n

k=1
mk. The

center of mass of this discrete system is defined by the point whose x-coordinate is x, where

x =

∑n

k=1
mkxk∑n

k=1
mk

.

The underlying physical intuition is that since (as you can check)
∑n

k=1
mk(x − xk) = 0, where

(x − xk) is interpreted as the “signed” distance from xk to x, the system of masses will “balance”
(neither tip to the right nor to the left) at the center of mass. This is essentially the principle of
the lever; a small mass far from the balance point can balance a larger mass close to the balance
point but on the other side.

Your first task is to extend this notion to a solid rod of varying density.

Task 1: Consider a rod of length L meters lying on the interval [0, L] on the x-axis. Assume the
rod’s density is non-constant and given by ρ(x) kg/m, x ∈ [0, L]. Your first task is to show that
the center of mass of the rod is

x =

∫ L

0
xρ(x)dx∫ L

0
ρ(x)dx

.

Idea: Partition the interval [0, L] via the regular partition {0 = x0, x1, x2, · · · , xn = L}, with
∆x = L

n
. Now, think of each piece of the rod lying on the kth segment [xk−1, xk] as a discrete mass

whose coordinate is any point of your choice, zk ∈ [xk−1, xk]. Approximate x as a quotient of two
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Riemann sums, and let n → ∞.

Task 2: Use your results in Task 1 to find the center of mass of a 2-meter rod lying on the interval
[0, 2] whose density is given by ρ(x) = .01

√
x + 1 kg/m.

Part II: Two-dimensional objects.

Here, we extend the ideas developed for one-dimensional objects to find the center of mass (centroid)
of a thin plate occupying a region R. To simplify the problem, we will assume the density of the
plate is a constant, say ρ kg/m2.

As in the one-dimensional case, suppose we have a discrete system of n masses mk each located
at a point (xk, yk) in the plane. We define Mx, the moment of the system about the x-axis by:

Mx =

n∑
k=1

mkyk.

Similarly, we define My, the moment of the system about the y-axis by: My =
∑n

k=1
mkxk. Also,

the total mass of the system is given by M =
∑n

k=1
mk. Finally, we define the center of mass of

this discrete system to be the point (x, y), where

x =
My

M
=

∑n

k=1
mkxk∑n

k=1
mk

, y =
Mx

M
=

∑n

k=1
mkyk∑n

k=1
mk

.

The intuition is, as before, that x− xi represents the “signed” distance from the point (xi, yi) to
the line x = x; the condition

∑
mi(x − xi) = 0 (which follows, as before, from the formula above)

ensures that the masses, if placed on a massless plate supported along the vertical line x = x, will
balance. The other condition ensures that the masses balance when supported along the horizontal
line y = y. The masses will therefore balance on the point of a pin placed at the center of mass:
they will not tip left, right, “up” or “down”.

Task 3: Your next task is to fill in the details behind the following computation. Assume we have
a thin plate occupying a region R as shown. Also, assume the density of the plate is a constant ρ
kg/m2.

ba

c

d

R

In order to find the centroid of the plate, we start by finding x. We partition the interval [a, b]
via the regular partition {a = x0, x1, x2, · · · , xn = b}, with ∆x = b−a

n
. This process results in

dividing the plate into thin vertical strips which can be approximated as a rectangle of a small
width ∆x. Let L(zk) be the total length of the line segments of intersection of the vertical line
x = zk with R, where zk ∈ [xk−1, xk] is any point of your choice. Now, we think of each vertical
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strip of the plate as a discrete mass in the plane whose coordinate is (zk, wk), for some wk ∈ R,
which is irrelevant in the following calculations. Let us note that the mass of the kth vertical strip
is given by: mk = (density)(area) ≈ ρL(zk)∆x. So, by thinking of the whole plate as a discrete
system of n masses mk ≈ ρL(zk)∆x each located at a point (zk, wk) in the plane, we find

x =
My

M
≈

∑n

k=1
ρzkL(zk)∆x∑n

k=1
ρL(zk)∆x

=

∑n

k=1
zkL(zk)∆x∑n

k=1
L(zk)∆x

.

By letting n → ∞, we obtain the formula x =

∫ b

a
xL(x)dx∫ b

a
L(x)dx

.

Your task here is to fill in the details explaining why the formula for x is valid. Also, you should
carry out similar steps to obtain

y =

∫ d

c
yS(y)dy∫ d

c
S(y)dy

,

where S(wk) is the total length of the line segments of intersection of the horizontal line y = wk

with R.

Task 4: Explain why A(R), the area of the region R, is given by: A(R) =
∫ b

a
L(x) dx =

∫ d

c
S(y) dy.

Hence, we have

x =
1

A(R)

∫ b

a

xL(x)dx, y =
1

A(R)

∫ d

c

yS(y)dy.

Use this to explain why, if the region R has a vertical line of reflection symmetry x = A, then
x = A = a+b

2
, and if R has a horizontal line of reflection symmetry y = B, then y = B. [Hint: a

line of symmetry tells us something about the functions L(x) or S(y).]

By computing L(x) and S(y) for specific examples, together with symmetry considerations, we
can compute the centroids of a wide variety of regions in the plane:

Task 5: Compute the centroid of a thin plate occupying:

(a): the disk D = {(x, y) : (x + 2)2 + y2 ≤ 1};
(b): the triangle with vertices (1, 0), (5, 0), and (4, 4);
(c): the region lying between the parabolas y = 2x − x2 and y = 2x2 − 4x

Computations of centroids, especially by symmetry considerations, can aid us in other computa-
tions. For example, using the formula for the volume of a solid obtained by revolving a region R
around the line x = c, by cylindrical shells,

volume =

∫ b

a

2π|x − c|L(x) dx = ±
∫ b

a

2π(x − c)L(x) dx

= ±2π(
∫ b

a
xL(x) dx − c

∫ b

a
L(x) dx) = ±2π(x − c)A(R) = 2π|x − c|A(R)

and there is a similar computation for lines y = c. This establishes the Theorem of Pappus: the
volume of a solid of revolution (a region R revolved around an axis in the plane which misses R)
is equal to the area of the region R, A(R), times 2π|x − c| (or, for horizontal lines, 2π|y − c|), the
circumference of the circle traced out by the centroid of R.

Task 6: Use Pappus’ Theorem to compute the volumes of the solids obtained by revolving each of
the regions in Task 5 around the lines

(a): x = −3 (b): y = 6.


