Math 106 Topics Since the Third Exam

Applications of integration:

Area between curves

Region between two curves; approximate by rectangles

bottom $(right) - (left) dy$ ssk

If what the function at top/bottom is changes, cut the interval into pieces, and

use
$$
\int_{a}^{b} = \int_{a}^{c} + \int_{c}^{b}
$$

Sometimes to calculate area between $f(x)$ and $g(x)$, need to first figure out limits of integration; solve $f(x) = g(x)$, then decide whicxh one is bigger in between each pair of solutions.

Volume by slicing:

To calculate volume, aprroximate region by objects whose volume we can calculate.

Volume $\approx \sum(\text{volumes of 'cylinders'}) = \sum(\text{area of base})(\text{height})$

 $=\sum(\text{area of cross-section})\Delta x_i$

So volume =
$$
\int_{left}^{right} \text{(area of cross section)} dx
$$

Solids of revolution: disks and washers:

Solid of revolution: take a region in the plane and revole it in space around an axis in the plane.

take cross-sections perpendicular to axis of revolution cross-section = disk (area= πr^2) or washer (area= $\pi R^2 - \pi r^2$)

rotate around x-axis: write r (and R) as functions of x , integrate dx

rotate around y-axis: write r (and R) as functions of y, integrate dy Otherwise, everything is as before:

volume =
$$
\int_{left}^{right} A(x) dx
$$
 or volume = $\int_{bottom}^{top} A(y) dy$

same is true if axis is <u>parallel</u> to $x-$ or $y-$ axis; r and R just change (add a constant)

Cylindrical shells:

Different picture, same volume!

Solid of revolution; use cylinders centered on the axis of revolution Intersection is a cylinder, with area = (circumference)(height) = $2\pi rh$

volume =
$$
\int_{left}^{right}
$$
 (area of cylinder) dx or \int_{bottom}^{top} (area of cylinder) dy!)

revolve around vertical line: integrate dx

revolve around horizontal line: integrate dy

Ex: region in plane between $y = 4x$, $y = x^2$, revolved around y-axis

left=0, right=4,
$$
r = x
$$
, $h = (4x - x^2)$

$$
volume = \int_0^4 2\pi x (4x - x^2) dx
$$

Lengths of curves:

Idea: approximate a curve by lots of short line segments; length of curve \approx sum of lengths of line segments.

Line segment between $(c_i, f(c_i))$ and $(c_{i+1}, f(c_{i+1}))$:

$$
\sqrt{1 + (\frac{f(c_{i+1}) - f(c_i)}{c_{i+1} - c_i})^2} \cdot (c_{i+1} - c_i) \approx \sqrt{1 + (f'(c_i))^2} \cdot \Delta x_i
$$

 $\frac{S_{\text{O}}}{S_{\text{O}}}$ length of curve $=$ \int^{right} $_{left}$ $\sqrt{1 + (f'(x))^2} dx$

The problem: integrating $\sqrt{1 + (f'(x))^2}$!

sometimes, $1 + (f'(x))^2$ turns out to be a perfect square.....