Math 1650 Topics for third exam

(Technically, everything covered on the <u>first and second</u> exams, <u>plus</u>...)

Chapter 4: Trigonometry

§1: Degrees and radians angle: vertex, initial side, terminal side standard position: vertex=origin, initial side=(positive) x-axis coterminal angles: same terminal side measuring size of an angle one full circle = 360 degrees one full circle = 2π radians radian measure = length of arc in circle of radius 1 swept out by the angle acute, obtuse, reflex angles $A+B = \pi/2$; complementary angles (acute) $A+B = \pi$; supplementary angles (acute, obtuse) §2: Trigonometric functions In standard form, terminal side of an angle (t) meets circle of radius 1 in a point (x, y) $x = \cos t = \operatorname{cosine} \operatorname{of} t$ $y = \sin t = \sin t$ of t $\frac{1}{x} = \frac{1}{\cos t} = \sec t = \operatorname{secant} \text{ of } t \qquad \frac{1}{y} = \frac{1}{\sin t} = \csc t = \operatorname{cosecant} \text{ of } t$ $\frac{y}{y} = \frac{\sin t}{\cos t} = \tan t = \text{tangent of } t \qquad \frac{y}{y} = \frac{\sin t}{\sin t} = \cot t = \text{cotangent of } t$ Examples: $\sin(\pi/4) = \cos(\pi/4) = \sqrt{2}/2$ $\sin(\pi/6) = 1/2$; $\cos(\pi/6) = \sqrt{3}/2$ $\sin(\pi/3) = \sqrt{3}/2 ; \cos(\pi/3) = 1/2$ $\sin(\pi/2) = 1 ; \cos(\pi/2) = 0 \quad \sin(0) = 0 ; \cos(0) = 1$ Domain of $\sin t$, $\cos t$: all t Range: [-1, 1]point on circle corresp. to $t + 2\pi$ is same as point for t $\sin(t+2\pi) = \sin t \ ; \ \cos(t+2\pi) = \cos t$ $\sin t$ and $\cos t$ are periodic symmetry: $\cos t$, $\sec t$ are even functions $\sin t$, $\csc t$, $\tan t$, $\cot t$ are odd functions $x^{2} + y^{2} = 1$ (unit corcle): $\sin^{2} t + \cos^{2} t = 1$ §3: Right angle trigonometry Right triangle: $\sin(\theta) = a/c = (\text{opposite})/(\text{hypotenuse})$ $\cos(\theta) = b/c = (\text{adjacent})/(\text{hypotenuse})$ $\tan(\theta) = a/b = (\text{opposite})/(\text{adjacent})$ "SOHCÀHTOA" Copmplementary angle = the 'other' angle in a right triangle $\begin{aligned} \sin(\pi/2 - \theta) &= \cos(\theta) , & \cos(\pi/2 - \theta) = \sin(\theta) \\ \tan(\pi/2 - \theta) &= \cot(\theta) , & \cot(\pi/2 - \theta) = \sin(\theta) \\ \sec(\pi/2 - \theta) &= \cot(\theta) , & \cot(\pi/2 - \theta) = \tan(\theta) \\ \sec(\pi/2 - \theta) &= \csc(\theta) , & \csc(\pi/2 - \theta) = \sec(\theta) \\ (\text{ i.e., function("co-angle")} &= \text{"co-function" (angle)}) \end{aligned}$

$\S4$: Trig functions for any angle

Right angle trig really applies only to **acute** angles; extend the ideas! angle θ , point (x, y) on terminal side

$$r = \sqrt{x^2 + y^2}$$

 $\sin(\theta) = y/r$ $\cos(\theta) = x/r$ $\tan(\theta) = y/x$

reference angle = acute angle that terminal side makes with x-axis $(\text{trig fcn})(\theta) = (\text{trig fcn})(\text{ref. angle}), \text{except possibly for a change in sign:}$

II	I
(x<0,y>0)	(x>0,y>0)
$egin{aligned} \sin(heta) > 0 \ \cos(heta) < 0 \ an(heta) < 0 \end{aligned}$	$egin{array}{l} \sin(heta) > 0 \ \cos(heta) > 0 \ au(heta) > 0 \ au(heta) > 0 \end{array}$
$egin{aligned} \sin(heta) < 0 \ \cos(heta) < 0 \ an(heta) > 0 \end{aligned}$	$egin{array}{l} \sin(heta) < 0 \ \cos(heta) > 0 \ au(heta) < 0 \end{array}$
$egin{aligned} \sin(heta) &< 0 \ \cos(heta) &< 0 \ \tan(heta) &> 0 \ (x < 0, y < 0) \end{aligned}$	$egin{aligned} \sin(heta) < 0 \ \cos(heta) > 0 \ an(heta) < 0 \ \ (x > 0, y < 0) \end{aligned}$

§5: Graphs of sine, cosine

 $\sin(\theta) = y$ -value of the points (counter-clockwise) on the unit circle, starting with 0 $\cos(\theta) = x$ -value of the points (counter-clockwise) on the unit circle, starting with 1

Graph: note x-intercepts, y-intercept, maximum and minimum; draw a smooth curve Transformations: $y = a \sin(bx)$

vertical stretch by factor of a; **amplitude** is |a|

amplitude = how far trig function wanders from its 'center'

horizontal compression by factor of b; period is $2\pi/|b|$

Translations: just like before

 $y = \cos(x - a)$; translation to right by a

 $y = \cos(x) + a$; translation up by a

§6: Graphs of other trig functions $\tan x$, $\cot x$, $\sec x \csc x$

Transformations (same)

Products: $\sin x$, $\cos x$ bounce between -1 and 1; so, for example:

 $y = x \sin x$ bounces between y = x and y = -x

 $y = e^{-x} \cos x$ bounces between $y = e^{-x}$ and $y = -e^{-x}$ ('damped' trig function) §7: Inverse trig functions

Inverses of trig functions? No! Not one-to-one. Solution: make them one-to-one! $f(x) = \sin x$, $-\pi/2 \le x \le \pi/2$, is one-to-one inverse is called $\arcsin x =$ angle (between $-\pi/2$ and $\pi/2$) whose sine is x $\sin(\arcsin x) = x$; $\arcsin(\sin x) = x$ if x is between $-\pi/2$ and $\pi/2$ $f(x) = \cos x$, $0 \le x \le \pi$, is one-to-one inverse is called $\arccos x =$ angle (between 0 and π) whose cosine is x $\cos(\arccos x) = x$; $\arccos(\cos x) = x$ if x is between 0 and π $f(x) = \tan x$, $-\pi/2 < x < \pi/2$, is one-to-one inverse is called $\arctan x =$ angle (between $-\pi/2$ and $\pi/2$) whose tangent is x $\tan(\arctan x) = x$; $\arctan(\tan x) = x$ if x is between $-\pi/2$ and $\pi/2$ Graphs: take appropriate piece fo trig function, and flip it across the line y = x

 $\cos(\arcsin x) = (\cosh \ \text{of angle whose sine is } x) = \sqrt{1 - x^2}$; etc.

Chapter 5: Analytic trigonometry

§1: Using fundamental identities

Fundamental identities: Reciprocal: $\csc x = \frac{1}{\sin x}$ $\sec x = \frac{1}{\cos x}$ $\cot x = \frac{1}{\tan x}$ Quotient: $\tan x = \frac{\sin x}{\cos x}$ $\cot x = \frac{\cos x}{\sin x}$

Pythagorean: $\sin^2 x + \cos^2 x = 1$ $\tan^2 x + 1 = \sec^2 x$ $\cot^2 x + 1 = \csc^2 x$ Complementarity: $\sin(\pi/2 - x) = \cos(x)$ $\tan(\pi/2 - x) = \cot(x)$ $\sec(\pi/2 - x) = \csc(x)$

$$\cos(\pi/2 - x) = \sin(x) \qquad \cot(\pi/2 - x) = \tan(x) \qquad \csc(\pi/2 - x) = \sec(x)$$

Symmetry: $\cos(-x) = \cos x$ $\sec(-x) = \sec x$ $\sin(-x) = -\sin x$ $\csc(-x) = -\csc x$ $\tan(-x) = -\tan x \cot(-x) = -\cot x$ Trig substitution: rewrite expression in x by 'pretending' x=trig function $\sqrt{a^2 - x^2}$: write $x = a \sin \theta$, then $\sqrt{a^2 - x^2} = a \cos \theta$

$$\sqrt{a^2 + x^2}$$
; write $x = a \tan \theta$, then $\sqrt{a^2 + x^2} = a \sec \theta$
 $\sqrt{x^2 - a^2}$; write $x = a \sec \theta$, then $\sqrt{x^2 - a^2} = \pm a \tan \theta$

§2: Checking trig identities

Basic differences: an identity is supposed to be true for **every** value of x; an equation is **solved** for the correct values of x

Basic idea: use identities that we already **know** (like the list above) convert things to sines and cosines

play with the two sides of the identity

add 0 ! multply and divide by the same expression!

Examples:
$$\csc x - \sin x = \frac{1}{\sec x \tan x}$$
$$\frac{\tan x + \tan y}{1 - \tan x \tan y} = \frac{\cot x + \cot y}{\cot x \cot y - 1}$$

 $\S3$: Solving trig equations

Idea: just like exponential and logarithmic equations; try to rewrite as (single trig function) = (single value) Wrinkles: Polynomials: $2\cos^2 x + 3\cos x + 1 = 0$; $(2\cos x + 1)(\cos x + 1) = 0$ $2\cos x + 1 = 0$ or $\cos x + 1 = 0$

Trig identities: $\tan x + \sec x = 4$; $\tan x = 4 - \sec x$; square both sides $tan^2x \ (= \sec^2 x - 1) = 16 - 8 \sec x + \sec^2 x = \dots$

Problem: 'ghost solutions' = solutions which 'appear' only after manipulating equation

(stupid) Ex: $\sin x = 1$ and $(\sin x)^2 = 1$ have different sets of solutions!

§4: Angle sum and difference formulas $\sin(A+B) = \sin A \cos B + \cos A \sin B$ $\sin(A - B) = \sin A \cos B - \cos A \sin B$ $\cos(A + B') = \cos A \cos B - \sin A \sin B$ $\cos(A - B) = \cos A \cos B + \sin A \sin B$

Note: it is easy to derive any three formulas from the remaining one, using even/odd and complementarity formulas.

$$\tan(A+B) = \frac{\sin(A+B)}{\cos(A+B)} = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$
$$\tan(A-B) = \frac{\sin(A-B)}{\cos(A-B)} = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Some uses: complex multiplication! (side trip to part of Section 6.5)

(a+bi)(c+di) = (ac-bd) + (ad+bc)ipretend $z=a+bi=\cos A+i\sin A$, $z'=c+di=\cos B+i\sin B$, then this reads $z \cdot z' = (\cos A \cos B - \sin A \sin B) + (\sin A \cos B + \cos A \sin B)i$ $=\cos(A + B) = i\sin(A + B)$ Problem: $z=a+bi=\cos A+i\sin A$. then $a^2+b^2=\sin^2 A+\cos^2 A=1$ (every time) Solution: think $z=a+bi=r(\cos A+i\sin A)$, where $r^2 = a^2 + b^2$; i.e., think $z \leftrightarrow (a, b)$ (in plane) = point in plane at distance r from origin, making angle A with (positive) x-axis i.e., think $z=a+bi \leftrightarrow (a,b) \leftrightarrow (distance,angle)$; polar coordinates then complex multiplication multiplies distance and adds angles: $(r(\cos A + i\sin A))(r'(\cos B + i\sin B)) = (rr')(\cos(A + B) + i\sin(A + B))$

Another use: find values of trig functions at new angles:

Example: $105^{\circ} = 60^{\circ} + 45^{\circ}$ (i.e. $7\pi/12 = \pi/3 + \pi/4$), so $\cos(7\pi/12) = \cos(\pi/3 + \pi/4) = \cos(\pi/3)\cos(\pi/4) - \sin(\pi/3)\sin(\pi/4) =$ $(1/2)(\sqrt{2}/2) - (\sqrt{3}/2)(\sqrt{2}/2) = (\sqrt{2} - \sqrt{6})/4$

§5: Multiple angle, product-to-sum formulas

Double angle formulas: set A = B in formulas above! $\sin(2A) = \sin(A + A) = 2\sin A \cos A$

 $\cos(2A) = \cos(A + A) = \cos^2 A - \sin^2 a = 2\cos^2 a - 1 = 1 - 2\sin^2 A$ Triple angle? $\sin(3A) = \sin(2A + A) = \dots$

 $\sin^2 x = (1 - \cos(2x))/2$, $\cos^2 x = (1 + \cos(2x))/2$; these give Half-angle formulas:

$$\sin(x/2) = \sqrt{(1 - \cos x)/2}; \quad \cos(x/2) = \sqrt{(1 + \cos x)/2}$$
$$\tan(x/2) = \frac{\sin x}{1 + \cos x} = \frac{1 - \cos x}{\sin x}$$
Product-to-sum formulas:
$$\sin(A + B) + \sin(A - B) = 2\sin A\cos B, \text{ so}$$
$$\sin A\cos B = \frac{1}{2}(\sin(A + B) + \sin(A - B)) \qquad \text{Simlarly,}$$

 $\cos A \cos B = \frac{1}{2} (\cos(A+B) + \cos(A-B)), \text{ and}$ $\sin A \sin B = \frac{1}{2} (\cos(A-B) - \cos(A+B))$ Sum-to-product formulas: $\operatorname{set} A + B = x, A - B = y \text{ (solve: } A = \frac{x+y}{2}, B = \frac{x-y}{2}), \text{ plug in above!}$ $\sin x + \sin y = 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$ $\cos x + \cos y = 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}$ $\cos x - \cos y = 2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}$

OK, so what's the point? It's alot easier to remember what these formulas (in the previous two sections) **say** if you remember where they **come from**. We built all of these formulas up from **one formula**; $\cos(A - B) = \dots$. If you remember how each follows one from the other, then you don't 'have to' remember the formula!