Math 1710

Topics for second exam

Chapter 2: Derivatives

§7: Related Rates

Idea: If two (or more) quantities are related (a change in one value means a change in others), then their rates of change are related, too.

xyz = 3; pretend each is a function of t, and differentiate (implicitly).

General procedure:

Draw a picture, describing the situation; label things with variables.

Which variables, rates of change do you know, or want to know?

Find an equation relating the variables whose *rates of change* you know or want to know.

Differentiate!

Plug in the values that you know.

Chapter 3: Applications of Derivatives

§1: Extreme Values

c is an (absolute) maximum for a function f(x) if $f(c) \ge f(x)$ for every other x d is an (absolute) minimum for a function f(x) if $f(d) \le f(x)$ for every other x max or min = extremum

Extreme Value Theorem: If f is a continuous function defined on a closed interval [a, b], then f actually has a max and a min.

Goal: figure out where they are!

c is a relative max (or min) if f(c) is $\geq f(x)$ (or $\leq f(x)$) for every x near c. Rel max or min = rel extremum.

An absolute extremum is either a rel extremum or an endpoint of the interval.

c is a critical point if f'(c) = 0 or does not exist.

A rel extremum is a critical point.

So absolute extrema occur either at critical points or at the endpoints.

So to find the abs max or min of a function f on an interval [a, b]:

- (1) Take derivative, find the critical points.
- (2) Evaluate f at each critical point and endpoint.
- (3) Biggest value is maximum value, smallest is minimum value.

§2: The Mean Value Theorem

You can (almost) recreate a function by knowing its derivative

Mean Value Theorem: if f is containous on [a,b] and differentiable on (a,b), then there is at least one c in (a,b) so that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Consequences:

Rolle's Theorem: f(a) = f(b) = 0; between two roots there is a critical point.

So: If a function has no critical points, it has at *most* one root!

A function with f'(x)=0 is constant.

Functions with the same derivative (on an interval) differ by a constant.

f is increasing on an interval if x > y implies f(x) > f(y)

f is decreasing on an interval if x > y implies f(x) < f(y)

If f'(x) > 0 on an interval, then f is increasing

If f'(x) < 0 on an interval, then f is decreasing

§3: The First Derivative Test

Local max's / min's occur at critical points; how do you tell them apart?

Near a local max, f is increasing, then decreasing; f'(x) > 0 to the left of the critical point, and f'(x) < 0 to the right.

Near a local min, the opposite is true; f'(x) < 0 to the left of the critical point, and f'(x) > 0 to the right.

If the derivative does *not* change sign as you cross a critical point, then the critical point is not a rel extremum.

Basic use: plot where a function is increasing/decreasing: plot critical points; in between them, sign of derivative does not change.

§4: Graphing

when we look at a graph, we see where function is increasing/decreasing. We also see:

f is concave up on an interval if f''(x) > 0 on the interval

Means: f' is increasing; f is bending up.

f is concave down on an interval if f''(x) < 0 on the interval

Means: f' is decreasing; f is bending down.

A point where the concavity changes is called a point of inflection

Graphing:

Find where f'(x) and f''(x) are 0 or DNE

Plot on the same line.

In between points, derivative and second derivative don't change sign, so graph looks like one of:

Then string together the pieces!

Second derivative test: If c is a critical point and

f''(c) > 0, then c is a rel min (smiling!)

f''(c) < 0, then c is a rel max (frowning!)

§5: Limits at infinity, asymptotes

Last bit of information for a graph: what happens at the ends?

 $\lim_{x \to a} f(x) = L \text{ means } f(x) \text{ is close of } L \text{ when } x \text{ is really large.}$

 $\lim_{x\to-\infty} f(x) = M$ means f(x) is close of M when x is really large and negative.

Basic fact: $\lim_{x \to \infty} \frac{1}{x} = \lim_{x \to -\infty} \frac{1}{x} = 0$ More complicated functions: divide by the highest power of x in the denomenator. f(x), g(x) polynomials, degree of f = n, degree of g = m

$$\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = 0 \text{ if } n < m$$

$$\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} =$$

(coeff of highest power in f)/(coeff of highest power in g) if n=m

$$\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \pm \infty \text{ if } n > m$$

The line y=a is a horizontal asymptote for a function f if $\lim_{x\to\infty}f(x)$ or $\lim_{x\to-\infty}f(x)$ is equal to a.

I.e., the graph of f gets really close to y = a as $x \to \infty$ or $a \to -\infty$

The line x = b is a vertical asymptote for f if $f \to \pm \infty$ as $x \to b$ from the right or

If numerator and denominator of a rational function have no common roots, then vertical asymptotes = roots of denom.

 $f \to \infty$ or $f \to -\infty$: can use f incr or decr on either side of b to decide (so long as you already know it is blowing up!)

§6: Optimization

This is really just finding the max or min of a function on an interval, with the added complication that you need to figure out which function, and which interval! Solution strategy is similar to related rates:

Draw a picture; label things.

What do you need to maximize/minimize? Write down a formula for the quantity.

Use other information to eliminate variables, so your quantity depends on only one variable.

Determine the largest/smallest that the variable can reasonably be (i.e., find your interval)

Turn on the max/min machine!