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Math 189H Joy of Numbers Activity Log

Thursday, September 15, 2011

Thomas Jefferson: “I have only contempt for anyone who can think of only one way to

spell a word.”

Richard J. Trudeau: “Pure mathematics is the world’s best game. It is more absorbing

than chess, more of a gamble than poker, and lasts longer than Monopoly. It’s free. It can

be played anywhere - Archimedes did it in a bathtub.”

12758 is the largest number that cannot be expressed as a sum of distinct primes (i.e., as
a3
1 + a3

2 + · · · + a3
k

with a1, . . . , ak all distinct).

Class started by describing how to write 67 as four 4’s! Your instructor felt like he had
cheated, since he resorted to a ‘standard’ mathematical construction, the ‘integer part’ of
a number (denoted using the ‘floor’ function, bxc), which is the largest integer that is less
than or equal to x. But since we will be using this notation shortly, it seemed appropriate!
Online sources gave much more mundane ways to express 67...

We then went back to our exploration of what we will call linear combinations of integers
a and b, namely the integers ax + by with x, y ∈ Z. We started with our pairs from last
time. For 1131 and 468, the smallest combination anyone could make was 39 (which quite
surprised your instructor). If we ran the Euclidean algorithm, we could accomplish this:
1131 = 468 · 2 + 195
468 = 195 · 2 + 78
195 = 78 · 2 + 39
78 = 39 · 2 + 0

We didn’t construct the linear combination realizing 39, although we have seen in other
examples that we can work from the bottom up to achieve this. For our other examples we
found by a similiar string of long divisions that we could write 1 as linear combinations.

We could verify in the above case that 39 is also the largest common divisor of 1131 and
468, by factoring these numbers (basically, finding ‘small’ factors to chip away at them).
1131 = 3 · 377 = 3 · 13 · 29 and 468 = 2 · 234 = 2 · 2 · 117 = 22 · 3 · 39 = 22 · 32 · 13
so the largest common factor we can build is 3 · 13 = 39. What we knew from last time
was that the largest common factor (what we will from now on call the greatest common

divisor or GCD to remain in line with what everybody else says) could be at most 39,
since anything that divides both 1131 and 468 must divide all linear combinations, in
particular, 39. But the calculations above also already tell us that 39 divides both 1131
and 468. The last equation shows that 39 divides 78, the previous remainder before 39.
Then the next equation up, since 39 divides both 78 and 39, tells us that 39 divides 195
(as a linear combination of 78 and 39). Then the next line up says that 468, a linear
combination of 195 and 78, is divisible by 39; and the first equation then says that 1131,
a linear combination of 468 and 195, is divisible by 39, as well!

We can see that this holds more generally. If we apply the Euclidean algorithm to numbers
a and b, repeatedly using long division of the previous divisor by the previous remainder
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to create a new remainder, then the last positive remainder r that we create will be a
linear combination of a and b, and so gcd(a, b) ≤ r; but as we saw above r will divide all
previous remainders, and so will divide both a and b, so r is a divisor of a and b, and so
r ≤ gcd(a, b). But since the only way to be both smaller and bigger than another number
is to be that number, we can conclude that r = gcd(a, b).

In particular, the smallest positive linear combination of a and b is the same as the greatest
common divisor of a and b. And the last remainder standing when we run the Euclidiean
algorithm on a and b is this common value.

At this point, we took a little side-trip, since our computation of (what we can now
recognize as) gcd(1131, 468) = 39 had the rather interesting additional feature that all of
the quotients we encountered were 2. It turns out that one can use this list of quotients

to build an interesting representation of the quotient
1131

468
[and which will also teach us

some useful notation].

1131 = 468 · 2 + 195 can be rewritten as
1131

468
= 2 +

195

468
.

The ‘2’ we get as quotient is the ‘integer part’ of the fraction x =
1131

468
, the largest integer

that isn’t bigger than it. It is often denoted 2 =
⌊1131

468

⌋

. The remainder,
1131

468
− 2 =

1131

468
−

⌊1131

468

⌋

=
195

468
is called the ‘fractional part’ (it is x − bxc). The next equation,

468 = 195 · 2 + 78, can be written y =
468

195
= 2 +

78

195

which expresses y as byc + (y − byc), it’s integer and fractional part. But y here is the
reciprocal of the fractional part of x! This pattern continues through the Euclidean al-

gorithm for any pair of integers a and b: At the first step the quotient is q = b
a

b
c, with

remainder r = a − bq (i.e., fractional part
r

b
=

a

b
− q =

a

b
− b

a

b
c). Then one continues

with the reciprocal of the fractional part,
b

r
(which is now greater than 1) and repeat the

process! So one can implement the Euclidean algorithm as repeated use of the ‘integer
part’ function bxc, subtraction, and taking reciprocals. It ends when there is no fractional
part left.

The intriguing part of our calculation of gcd(1131, 468) = 39 was that all of the integer

parts we saw were 2. This leads to an interesting expression for
1131

468
:

We have:
1131

468
= 2 +

195

468

468

195
= 2 +

78

195

195

78
= 2 +

39

78

78

39
= 2

Putting these all together, we find that

1131/468 = 2 + [195/468] = 2 + 1/(468/195) = 2 + 1/(2 + [78/195])

= 2 + 1/(2 + 1/(195/78)) = 2 + 1/(2 + 1/(2 + [39/78])) = 2 + 1/(2 + 1/(2 + 1/2)))

This looks much more interesting if you don’t try to fit it on a single line!
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1131

468
= 2 +

1

2 +
1

2 +
1

2
This kind of expression is known as a continued fraction: the typical form is
m

n
= a0 +

1

a1 + 1

a2+
1

···+ 1
ak

. A common shorthand notation for this: [a0, a1, a2, . . . , ak].

And the Euclidiean algorithm can be used to build it! You can even build continued
fractions for numbers that aren’t quotients of integers (i.e., rational numbers), although
then the expression will not ‘terminate’. A quick jump onto the web found us an (infinite)
continued fraction for the famous number e = 2.718281828459045 . . . :

e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, . . . ]

which displays far more of a pattern than anyone previously would have expected. This
brought up the question of what is so important about the number e, which your instructor
did a not terribly good job of answering (because a precise answer requires dragging in
too much higher mathematics). But you will find the number e (and the exponential
function ex) quite literally all over the place, in the physical sciences, economics, and
certainly throughout mathematics, most often where the rates of change of quantities are
important.

We then had some fun with a one-line implementation of the Euclidean algorithm (using the
floor function) that your instructor typed up in Maple 15, to watch the greatest common
divisors of pairs of numbers being computed in ‘real time’. These computations appeared
blazingly fast, even when we tried to crash the computer by feeding it pairs of numbers
with 100 and more digits. This prompted our thought question for next Tuesday: how fast
shuld we ‘expect’ the Euclidean algorithm to be?

Computing gcd’s (as, technically, smallest linear combination) is all well and good, but
we should try to get back to our main goal: stalking big primes. Can they help us to do
that? Can they help us find factors of numbers, or tell us that a number has no proper
factors (which we defined to mean factors of n other than the ‘obvious’ ones, ±1 and ±n).
The answer, we will see, is ‘Yes’ ! We can see some of that by thinking about some of
the compuations we watched the computer do; in under a second, it could tell us that
the gcd of two 100-digit numbers was (as was often the case) 1. This means that the
two numbers share no factors in common, other than ±1. And the point was, it did this
without knowing what the factors of the two numbers were. It in effect compared the two
lists of proper factors of the numbers and discovered that there was no number common to
both lists, without building either list! This is our first indication that what was asserted
at the very beginning of the course was true: it is possible to obtain information about
the list of factors of a number (like, there are proper factors) without knowing what the
list is (i.e., without knowing any proper factors).

To stimulate discussion for Tuesday, we had the following question:

How fast is the Euclidean algorithm? How many times do we need to carry out long
divisions starting from two numbers m and n, in order to compute their GCD?
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