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Math 189H Joy of Numbers Activity Log

Thursday, September 29, 2011

Albert Einstein: “Everything should be made as simple as possible, but not simpler.”

Alfred North Whitehead: “Civilization advances by extending the number of important

operations which we can perform without thinking about them.”

13188208812 = 1739288516161616161

The goal for today was to learn what we could learn from the calculations and procedures
we developed in the past week! We had discovered that divisibility by 11 could be tested
by cutting your number up into chunks of size 2 (from the right), adding them up, and
asking the same question about that sum. And disibility by 13 could be answered by the
same procedure, except we would use chunks of size 6. The point to both of these, in the
end, was that 102 ≡

11
1 and 106 ≡

13
1 . For a number of size less than the chunk size, by

finding the remainders of all of the powers of 10 on division by our divisor of interest up to
the chunk size, we could replace our number by a sum (of small products), and test that
number instead.

All of this required us to compute the remainders of products and sums of numbers. Being
good lazy matheamticians, we wanted to know, is there a quicker way to do this? Last
time we learned that congruence behaves well under products: if n ≡

d

m and a ≡
d

b,

then na ≡
d

mb. [NOTE THAT THIS IS RIGHT, WHAT WAS IN THE PREVIOUS

LOG WAS WRONG!] And true to form, we could see that addition and subtraction work
well, as well. If n ≡

d

m and a ≡
d

b, then n+a ≡
d

m+ b and n−a ≡
d

m− b. The reasoning

is very much the same: since n = m+ dx and a = b+ dy, then n+ a = (m+ b)+ d(x+ y),
and n − a = (m − b) + d(x − y). What these mean for us is that, if all we care about is
what remainder some number has on division by d, where the number is built out of other
numbers by various arithmetical operations, then we can replace all of the numbers going
into the calculations with their remainders first, without changing the remainder of the
outcome.

So, for example, when we were building our table of powers of 10, computing the remainders
in order to find the size of the chunk to use, we didn’t need to compute 105, say, and then
find the remainder on division by 13; instead we could have used the fact that we knew that
104 had remainder 3, multiplied that by 10 to get 30, found its remainder, 4, and concluded
that 105 ≡

13
4. This observation also prompted us to remember that taking powers is an

arithmetic operation, too, sort of, and to note that congruence likes exponentiation, too: If
n ≡

d

m then for any positive integer k we have nk ≡
d

mk . In discussing this, we could see

why it ought to be true: taking powers is really repeated multiplication, and congruence
likes multiplication, so surely it likes repeated multiplication?! A formal justification of
this will need a new tool in our toolkit (the relevant word is ‘induction’), which we will
take up sometime later. But back to powers of 10...
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A part of all of our divisibility tests required us to find a power 10k of 10 that was
congruent to 1 modulo the number n whose divisibility test we were constructing. The
question is, how do we find that k? We could do what we had always done, starting
with 100 = 1 and continuing up until we found it. Sometimes, we could stumble across
it by combining values we had previously determined, by the new rules we have learned
about congruence. For example, playing with (I think) n = 23, we found that 102 ≡ 8, so
103 ≡ 80 ≡ 11, so 106 = (103)2 ≡ 112 = 121 ≡ 6, and 105 = 102 · 103 ≡ 88 ≡ 19 ≡ −4, so
1011 ≡ (6)(−4) = −24 ≡ −1, so 1022 ≡ (−1)2 = 1. This, and other calculations, prompted
us to ask, for a given modulus n, what is the smallest k so that 10k ≡ 1 mod n ? After
playing for awhile, we noted that some numbers aren’t allow to play at all: if 2|n, then
10k = 1 + nt can only happen for k = 0, since otherwise we have 2|10k (since 2|10) but
1+ nt would leave remainder 1 on division by 2. So multiples of 2 are out of luck. For the
same reason (since 5|10), multiples of 5 can’t play.

At this point we decided we needed some real data, so we fired up Maple and had it spit
out, for whatever modulus n we fancied, what the smallest values of k were so that 10k ≡ 1
mod n. Assuming your instructor remembered the numbers we fed in correctly, here is
(some of) the data we generated:

n = 73, then k = 8, 16, 24, 32, 40, 48, 56, 64, 72, 80

n = 41, then k = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50

n = 17, then k = 16, 32, 48, 64, 80

n = 1001, then k = 6, 12, 18, 24, 30

n = 1003, then k = 464, 928

n = 997, then k = 166, 332, 498, 664, 830, 996

n = 91, then k = 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90

n = 23, then k = 22, 44, 66, 88

n = 27, then k = 3, 6, 9, 12, 15, 18, 21

n = 29, then k = 28, 56, 84

n = 31, then k = 15, 30, 45, 60

n = 129, then k = 21, 42, 63, 85, 105, 126

n = 139, then k = 46, 92, 138

n = 141, then k = 46, 92, 138 (interesting coincidence, that!)

n = 541, then k = 540, 1080

n = 1137, then k = 378, 756, 1134

n = 49, then k = 42, 84, 126

n = 77, then k = 6, 12, 18, 24, 30, 36, 42, 48, 60, 66, 72, 78

n = 99, then k = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

and lots of other examples were considered, as well (we were having fun...) OK, so what
do these numbers tell us? Well, first, so long as we searched far enough, we never failed to
find such values of k ! (And so long as we avoided multiples of 2 or 5.) We didn’t really
pick up on this point at the time, but it is an important thing to think about; we always
found what we went out looking for. Why was it always out there to be found? We should
come back to this point sometime!
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But at the moment we are after finding the smallest k, for a given n, so that 10k ≡ 1
mod n. What we found was that these numbers bounce all over the place. We’d like the
smallest number, since from our original motivation it represents that smallest chunk size
we would need to use to test for divisbility by n. But it is hard to see how to predict that
smallest number. Then we noticed that sometimes the smallest exponent that works for
n is n − 1; this is true for n = 17, 23, 29, 97, and 541, for example. Staring at the data
some more, with n − 1 on our minds, we noted that many times n − 1, while not being
the smallest exponent that works, at least is an exponent that works. This is true, in our
data set, for

n = 17, 23, 29, 31, 41, 73, 91, 99, 139, 541, 997

but it was not true (if we extended our list high enough to see!) for

n = 49, 77, 129, 141, 1001, 1003, 1137

We also found that we could use the values of k we have to decide whether or not 10n−1 ≡ 1
mod n, in the cases where our list didn’t extend far enough. For example, since 102 ≡ 1
mod 99, we know that 1098 = 102·49 = (102)49 ≡ 149 = 1, as well, and since 106 ≡ 1 mod
1001, we know that 101000 = 106·166+4 = (106)166 · 104 ≡ 1166 · 104 = 104, which is not
congruent to 1 modulo 1001 (since it didn’t appear on our list ahead of 6).

The 64 dollar question is, what distinguishes the numbers on one list from the ones on
the other? Initially we got quite excited, since the numbers on the first list appear to
be prime? (well, we would have been, maybe, if 91 = 7 · 13 hadn’t been one of the first
numbers we discovered that belonged on this list...). But upon further reflection, and some
juducious application of calculator time, we found that every number on our second list
isn’t prime! For example, 1001 = 7 · 11 · 13, 1003 = 17 · 59, and 1137 = 3 · 379. This
seems very suggestive... We were left with the impression that if 10n−1 ≡ 1 mod n then
n is “usually” prime, and if 10n−1 6≡ 1 mod n then n is not prime. [Here 6≡ means “not
congruent to”, using the standard mathematical laziness that a slash through a symbol
means “not”. Which makes 6< a fun way to write ≥ !]

The fact that n = 91 = 7 · 13 appeared on the “wrong” list prompted your instructor to
try to ‘explain’ this: The point is that 106 ≡ 1 mod 7, as we discovered when we built our
divisiblity by 7 test, and in fact 106 ≡ 1 mod 13, too, as we discovered last time. (Our
grand picture would have predicted 1012; apparently n = 13 does better than that.), This
means that 1060 = (106)10 ≡ 110 = 1 modulo both 7 and 13, and it is only a little bit of a
stretch (?) to believe that this means that 1060 ≡ 1 modulo their product, as well... These
and other explorations will need to wait for next time!
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