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Math 189H Joy of Numbers Activity Log
Tuesday, October 4, 2011

Gil Kalai: “Counting pairs is the oldest trick in combinatorics... FEvery time we count
pairs, we learn something from it.”

Dorothy Parker: “The cure for boredom is curiosity. There is no cure for curiosity.”

There are exactly 55 collections of numbers a, b, ¢, d so that every positive integer can
be expressed as ax? + by? + cz? + dw? for some integers x,y, z,w. (Ramanujan, 1920s?).
[1,1,1,1 is one such collection (Lagrange, 1770s7).]

We started with further speculation, extending our observations from last time. We had
seen that so long as n was not a multiple of 2 or 5, we were always able to find a k so that

10* = 1. More than that, sometimes the smallest such k& was n — 1, and looking further,

even when it wasn’t smallest, sometimes n—1 ‘worked’, that is, 10"~ =1. When we looked
n

still deeper, we found that n — 1 always worked when n was prime, and n — 1 ‘usually’
didn’t work when n was not prime. This prompted us to make the bold conjecture:

Conjecture: If n is prime, then 10"~! = 1.

Which we immediately realized was false!, because it fails to be true for 2 and 5. But these
primes are ‘special’; they divide 10. So we formulated the modified conjecture:

Conjecture: If n is prime and does not divide 10, then 10"~ ! = 1.

Which, we will see eventually, is true! But at this point our speculations have outrun our
toolkit; we need to back up a little and develop some techniques which will give us the
ability to verify a statement like this.

To get started, look at the perfect squares:

0,1,4,9,16,25, 36,49, 64, 81,100, 121, 144, . . .,

and now look at the differences of consecutive squares:
1,3,5,7,9,11,13,15,17,19,21,23, . . ..

Such a pattern can hardly be a coincidence, can it? If we think about how to use that

sequence (sorry, it’s the right term to use...) of differences to ‘build’ the squares from 0,
we have

1=(0+)1

4=(0+)1+3

9=(0+)14+3+5

16 =(0+)14+3+5+7

and the pattern continues all the way up through our list, to
144 =14+34+5+7+9+ 11+ 13+ 15+ 17+ 10+ 21 + 23 .

The question is, does it continue? Our conclusion was that it should, and so we asserted
that ‘The sum of consecutive odd numbers, starting from 1, is always a perfect square.’

XxXxil



Tu 4 October

Delving even deeper, comparing the 12 of 122 to the 23 = 11 4 12 at the end, and others,
we concluded that the sum of the odd numbers up to 2n — 1 should be n?. The question
is, how to prove it? For this, we need a new technique, known as the Principle of Math-
ematical Induction (or PMI [not PIM!]) for short). It asserts that if Q(n) is a statement
which involves the number n and for some integer ng [read by most people as “n-naught”,
although “n-zero” and “n-sub-zero” are also fairly common] we have

Q(np) is a true statement, and
for any n > ng, if we know that Q(n) is true then we can prove that Q(n + 1) is true, then
Q(n) is a true statement for every integer n > ny.

The idea behind this is that knowing Q(ng) is true (by the ‘base case’ hypothesis) implies
(by the ‘inductive case’ hypothesis) that Q(ng + 1) is true, which in turn implies that
Q(no + 2) is true, so Q(ng + 3) is true, and so on; repeating this n — ng times will allow
us to reach Q(n), which will then be true! A different perspective, which really pinpoints
the ‘assumption’ we are making, is that if Q(s) is false for some s > ng, then there is a
smallest such s (which we will call n) for which the statement is false. [This is known as the
Archimedean Principle: a collection of integers larger than ng, if it contains any integer at
all, has a smallest element.] But now either n = ny (which can’t happen: Q(ng) is true!),
or n > ng, in which case Q(n — 1) is true (since n — 1 > ng). But then the inductive case
tells you that Q(n) = Q([n — 1] + 1) must be true! Oops... So there can be no smallest n
with Q(n) false, so Q(n) can never be false!

This technique allows us to prove our assertion about squares, since 1 = 12 is true (the
base case!) and if we suppose that the sum of odd numbers up to 2n — 1 equals n?, then
to get the sum of odds up to the next odd number, 2n 4+ 1, we can start with the sum we
know, adding up to n?, and add 2n + 1, giving n2 +2n + 1 = (n + 1)? ! [We actually got
here by a slightly more roundabout way, recognizing ‘FOIL’ being written out in front of
our eyes...]. More symbolically:

If 1+3+---4(2n—1) = n? [this is our statement Q(n)], then 1+3+---+(2(n+1)—1) =
1434+ +2n+1) = 1434+ 2n—1)+(2n+1) = [14+3+-- -+ (2n—1)] + (2n+1) =
n?+2n+1)=Mn+1)2%s01+3+---+(2(n+1) — 1) = (n+ 1)? [this is our statement
Q(n+1)]. So since Q(1) is true and Q(n) true implies that Q(n + 1) is true, we know that
Q(n) is true for all n > 1, by PML

In much the same vein, if we explore the sums of successive cubes, we find that

13 =1

1P4+23=148=9=3?

13423 +33=9+27 =36 =6

13 +23 + 3% + 4% =36 + 64 = 100 = 102

13 +23 4334+ 43+ 5% =100+ 125 = 225 = 152

and more than that, we discovered, since 3=14+2,6=14+2+3,10=1+2+3+4, and
15=1+2+3+4+5, we were led to suspect that:

For every integern >1, 13 +33+ - 4+n3=(1+2+---+n)?
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Which we proceeded to try to show by induction! The base case, 13 = (1)2, is true. So we
moved on to look at the inductive case. Suppose that 13 +33+---4+n% = (1+2+4---+n)2.
Then adding one more cube, we get

PB4+334+- - +nP+(n+1)=1+2+---+n)*+ (n+1)3 by the inductive hypothesis.
If we write ¥ =14 --- + n to save ourselves some writing, what we want to show is that
Y24+ n+1)3=0+-+n+(n+1)2%=(Z+ (n+1))% But now FOIL came to the
rescue again!

(X+(n+1))? =X2+2(n+1)X+(n+1)2, and for this to be the same as X2+ (n+1)3, what
we need is 2(n + 1)X + (n + 1)2 = (n + 1)3, or, killing off a factor of (n + 1) everywhere,
2+ (n+1) = (n+1)?2, which means 2% = (n+1)2 —(n+1) = n?+n. So for our inductive
step to succeed, we need to know that

1
Y=0142+---+n)= §(n2 + n) (for every integer n > 1).

Which we can show is true! By induction! We will leave this verification for your thought
problem for next time...
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