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Gil Kalai: “Counting pairs is the oldest trick in combinatorics... Every time we count

pairs, we learn something from it.”

Dorothy Parker: “The cure for boredom is curiosity. There is no cure for curiosity.”

There are exactly 55 collections of numbers a, b, c, d so that every positive integer can
be expressed as ax2 + by2 + cz2 + dw2 for some integers x, y, z, w. (Ramanujan, 1920s?).
[1, 1, 1, 1 is one such collection (Lagrange, 1770s?).]

We started with further speculation, extending our observations from last time. We had
seen that so long as n was not a multiple of 2 or 5, we were always able to find a k so that
10k ≡

n
1. More than that, sometimes the smallest such k was n − 1, and looking further,

even when it wasn’t smallest, sometimes n−1 ‘worked’, that is, 10n−1≡
n

1. When we looked

still deeper, we found that n − 1 always worked when n was prime, and n − 1 ‘usually’
didn’t work when n was not prime. This prompted us to make the bold conjecture:

Conjecture: If n is prime, then 10n−1 ≡
n

1.

Which we immediately realized was false!, because it fails to be true for 2 and 5. But these
primes are ‘special’; they divide 10. So we formulated the modified conjecture:

Conjecture: If n is prime and does not divide 10, then 10n−1 ≡
n

1.

Which, we will see eventually, is true! But at this point our speculations have outrun our
toolkit; we need to back up a little and develop some techniques which will give us the
ability to verify a statement like this.

To get started, look at the perfect squares:

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, . . . ,

and now look at the differences of consecutive squares:

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, . . . .

Such a pattern can hardly be a coincidence, can it? If we think about how to use that
sequence (sorry, it’s the right term to use...) of differences to ‘build’ the squares from 0,
we have

1 = (0+)1
4 = (0+)1 + 3
9 = (0+)1 + 3 + 5
16 = (0+)1 + 3 + 5 + 7

and the pattern continues all the way up through our list, to

144 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 10 + 21 + 23 .

The question is, does it continue? Our conclusion was that it should, and so we asserted
that ‘The sum of consecutive odd numbers, starting from 1, is always a perfect square.’
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Delving even deeper, comparing the 12 of 122 to the 23 = 11 + 12 at the end, and others,
we concluded that the sum of the odd numbers up to 2n − 1 should be n2. The question
is, how to prove it? For this, we need a new technique, known as the Principle of Math-

ematical Induction (or PMI [not PIM!]) for short). It asserts that if Q(n) is a statement
which involves the number n and for some integer n0 [read by most people as “n-naught”,
although “n-zero” and “n-sub-zero” are also fairly common] we have

Q(n0) is a true statement, and

for any n ≥ n0, if we know that Q(n) is true then we can prove that Q(n+1) is true, then

Q(n) is a true statement for every integer n ≥ n0.

The idea behind this is that knowing Q(n0) is true (by the ‘base case’ hypothesis) implies
(by the ‘inductive case’ hypothesis) that Q(n0 + 1) is true, which in turn implies that
Q(n0 + 2) is true, so Q(n0 + 3) is true, and so on; repeating this n − n0 times will allow
us to reach Q(n), which will then be true! A different perspective, which really pinpoints
the ‘assumption’ we are making, is that if Q(s) is false for some s ≥ n0, then there is a
smallest such s (which we will call n) for which the statement is false. [This is known as the
Archimedean Principle: a collection of integers larger than n0, if it contains any integer at
all, has a smallest element.] But now either n = n0 (which can’t happen: Q(n0) is true!),
or n > n0, in which case Q(n − 1) is true (since n − 1 ≥ n0). But then the inductive case
tells you that Q(n) = Q([n − 1] + 1) must be true! Oops... So there can be no smallest n

with Q(n) false, so Q(n) can never be false!

This technique allows us to prove our assertion about squares, since 1 = 12 is true (the
base case!) and if we suppose that the sum of odd numbers up to 2n − 1 equals n2, then
to get the sum of odds up to the next odd number, 2n + 1, we can start with the sum we
know, adding up to n2, and add 2n + 1, giving n2 + 2n + 1 = (n + 1)2 ! [We actually got
here by a slightly more roundabout way, recognizing ‘FOIL’ being written out in front of
our eyes...]. More symbolically:

If 1+3+ · · ·+(2n−1) = n2 [this is our statement Q(n)], then 1+3+ · · ·+(2(n+1)−1) =
1+3+ · · ·+(2n+1) = 1+3+ · · ·+(2n−1)+(2n+1) = [1+3+ · · ·+(2n−1)]+(2n+1) =
n2 + (2n + 1) = (n + 1)2, so 1 + 3 + · · ·+ (2(n + 1) − 1) = (n + 1)2 [this is our statement
Q(n+1)]. So since Q(1) is true and Q(n) true implies that Q(n+1) is true, we know that
Q(n) is true for all n ≥ 1, by PMI.

In much the same vein, if we explore the sums of successive cubes, we find that

13 = 1

13 + 23 = 1 + 8 = 9 = 32

13 + 23 + 33 = 9 + 27 = 36 = 62

13 + 23 + 33 + 43 = 36 + 64 = 100 = 102

13 + 23 + 33 + 43 + 53 = 100 + 125 = 225 = 152

and more than that, we discovered, since 3 = 1 + 2, 6 = 1 + 2 + 3, 10 = 1 + 2 + 3 + 4, and
15 = 1 + 2 + 3 + 4 + 5, we were led to suspect that:

For every integer n ≥ 1, 13 + 33 + · · · + n3 = (1 + 2 + · · ·+ n)2
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Which we proceeded to try to show by induction! The base case, 13 = (1)2, is true. So we
moved on to look at the inductive case. Suppose that 13 +33 + · · ·+n3 = (1+2+ · · ·+n)2.
Then adding one more cube, we get

13 + 33 + · · ·+ n3 + (n + 1)3 = (1 + 2 + · · ·+ n)2 + (n + 1)3, by the inductive hypothesis.
If we write Σ = 1 + · · · + n to save ourselves some writing, what we want to show is that
Σ2 + (n + 1)3 = (1 + · · · + n + (n + 1))2 = (Σ + (n + 1))2. But now FOIL came to the
rescue again!

(Σ+(n+1))2 = Σ2+2(n+1)Σ+(n+1)2, and for this to be the same as Σ2+(n+1)3, what
we need is 2(n + 1)Σ + (n + 1)2 = (n + 1)3, or, killing off a factor of (n + 1) everywhere,
2Σ+(n+1) = (n+1)2, which means 2Σ = (n+1)2−(n+1) = n2 +n. So for our inductive
step to succeed, we need to know that

Σ = (1 + 2 + · · ·+ n) =
1

2
(n2 + n) (for every integer n ≥ 1).

Which we can show is true! By induction! We will leave this verification for your thought
problem for next time...
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