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Math 189H Joy of Numbers Activity Log
Thursday, October 6, 2011

Herbert Wilf: “Induction makes you feel guilty for getting something out of nothing, and
it is artificial, but it is one of the greatest ideas of civilization.”

Warren Buffett: “The only time to buy these [stocks] is on a day with no ’y’ in it”

We started by finishing our demonstration that 13 +23 + ...+ n? = (1 + 2+ --- +n)?,

1
by showing that ¥ = (1+2+---+n) = §(n2 + n). We agreed that we could surely

prove this by induction (and you were invited to do this for yourself!), but your instructor,
being a lazy mathematician, pointed out that we could recover this fact from one of our
previous ones: since 1+3+---+ (2n—1) = n? and we can go from our sum to this one by
multiplying every term by 2 and subtracting 1 (from every term), in essence multiplying
¥ by 2 and subtracting (n 1’s, or) n, we can see that 25 —n = n?, so 2¥ = n? + n and

1
Y= §(n2 +n). So our inductive step is finished, and

n(n+1)\2
) -
We decided to try our hands at one more of these: if we add together the odd squares,
what do we get?

12=1

124+32=1+9=10

124+324+52=10+25=35

12432452+ 7*=35+49 =84

12432452+ 72+ 92 =84+ 81 =165

12432 +5%2 4+ 72+ 92 + 112 = 165 + 121 = 286

12432452+ 7%+ 92 4+ 112 + 132 = 286 + 169 = 455

12432 +52+ 72+ 9% + 112 4+ 13% + 15% = 455 4 225 = 680

12432 +52 4+ 724+ 9%+ 112 4+ 132 + 15% 4+ 172 = 680 + 289 = 969
12432452+ 72+ 92 + 112 + 132 + 152 4+ 177 4+ 192 = 969 + 361 = 1330

What is the pattern in these sums? Initially, we had a hard time finding any. They do
alternate even and odd, so every other number is divisible by 2. This eventually led us to
start factoring the sums, after which we found:

13+23+...+n3:(1+2+...+n)2:(

sum through 12: 1

sum through 3%: 2-5

sum through 5%: 5-7

sum through 7%: 2-2-3-7

sum through 9%: 3-5-11

sum through 11%: 2-11-13
sum through 13%: 5-7-13

sum through 15%: 2.2-2.5-17
sum through 17%: 3-17-19
sum through 19%: 2-5-7-19
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Staring at these for awhile, a kind of pattern did emerge! Most of the time, the sum
through 2n — 1 was divisible by 2n — 1. In fact this was always true except when 2n — 1
was a multiple of 3. In those cases, though, the sum was divisible by (1/3)(2n — 1). More
than that, the same was true for the previous sum! Or put a little differently, the sum
through (2n — 1), when multiplied by 3, is a multiple of both 2n — 1 and 2n+ 1. So, calling
124324+ (2n—1)%? = ¥,,, we conjectured that 3%,, = (2n—1)(2n+ 1)(something). To
figure out what the something is, we computed 3%,,/[(2n — 1)(2n 4 1)] for n = 1 through
6, and found that the answers were 1,2,3,4,5 and 6 (!). So we conjectured:

1
P24+324+-+(2n—-1)*= gn(2n—1)(2n+1)
Once we had hit upon the right formula, it was all over but the shouting; verifying that this
1
is true for n = 1, and assuming that ¥, = 124+3*+ ...+ (2n — 1)? = gn(2n —1)(2n+1),

showing that the same is true for ¥, ;; amounts to showing that
1 1
[gn(2n ~D@n+1)] +@n+1)? = 2(n+ D(2n+1)(2n +3)

which, dividing everything by 2n + 1 and multiplying by 3 amounts to showing that

n(2n — 1) +3(2n+ 1) = (n + 1)(2n + 3). Since the lefthand side of this is 2n? + 5n + 3
and 253 = 11-23 (ie., 2-102+5-10+3 = (1-10+ 1)(2- 10 + 3), one is led to suspect
that 2n? + 5n + 3 factors as (n + 1)(2n + 3), which it does!, and which is the result we
want. This proves our inductive step; together with our initial step, PMI implies that our
formula is true for all n > 1.

Mathematical induction is so useful throughout mathematics that many different versions,
all amounting to the same thing, have been devised: one may be more pertinent to a
particular problem than another, though. There is complete induction, where we show
that Q(no) is true and show that if Q(k) is true for all ng < k < n, then Q(n) is true
i.e., we assume ‘complete’ knowledge of the truth of @ for every number below n in order
to prove it true for nl; then we can conclude that Q(n) is true for all n > ng. There is
also reductio ad absurdum (‘reduce to absurdity’), where you show the Q(n) is always true
by supposing that there is some value n where Q(n) is false; then by the Archimedean
principle there is a smallest n where @Q(n) is false. Reductio ad absurdum proceeds by
showing that whenever @Q(n) is false, there is a still smaller m < n where Q)(m) is false.
This violates the Archimdean principle, so there cannot be an n for which Q(n) is false,
so Q(n) is always true!

As an example of a use for complete induction, we worked out a proof of something that
we have implicitly used more than once already: every integer n > 2 can be written as
a product of primes. Our base case is n = 2, which is prime (and so a product of one
prime(s)!). Assuming that every integer less than n can be written as a product of primes,
now consider the integer n. If n is prime, we are done (it is a product of one prime(s)).
Otherwise, n is composite, so n = ab for some integers a,b > 1. But then, as we learned
before, a and b are both smaller than n, so by our (complete) induction hypothesis, we can
write a = py -+ -ps and b = ¢ - - - ¢; [which reminded your instructor of the phrase ‘on the
qt’ (meaning ‘secretly’); ‘qt’, it turns out, stands for ‘quiet’ (thank you, Google)], where
p; and ¢; are all prime. Then n = ab = p1 ---psq1 - - - ¢, which is a product of primes. So
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our (complete) inductive step is proved, and so, by complete induction, our proposition is
proved:

Every integer n > 2 can be written as a product of primes.
From this, we can establish an old result of Euclid:
There are infinitely many distinct prime numbers.

Put differently, given any number NV, there is a prime number p > N. The key to showing
that there is an infinite number of anything is to show that if you try to start listing them
your list will never end. And one typically does this by supposing that your list does end
(and proving that you were wrong!). [Attempts to turn this into a reductio ad absurdum
argument didn’t go very well...]

So we supposed that p; < ps < --- < pr was a list of all of the primes that there are. We
want to prove that we are wrong! To do this, we hit upon the idea of building a number
that is divisible by every prime in this list, since then if we add 1, the resulting number
will not be divisible by any of them. The ‘standard’ way this is usually done is to take
their product, N = p; - - - pg; this is divisible by all of the primes p;, so N + 1 isn’t divisible
by any of them. In the spirit of ‘Name That Tune’, we went for the version needing the
fewest symbols; since we had been clever enough to list our primes in order, it turns out
that N = pg! is divisible by every prime p;, so N +1 = pi! 4+ 1 leaves remainder 1 on
division by each prime p;, and so none of them are a factor of N 4+ 1. But N has a prime
factor (since it is a product of primes), and it cannot be on our list. So our list is not
complete; there must be still more primes. So the list of primes cannot end; there are an
infinite number of them.
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