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(Douglas) Hofstadter’s Law: “It always takes longer than you expect, even when you take
into account Hofstadter’s Law.”

Albert Einstein: “Since the mathematicians have invaded the theory of relativity, I do not
understand it myself anymore.”

Every integer n > 128 can be written as a sum of distinct perfect squares: n = a2

1
+ · · ·+a2

k

with 0 < a1 < · · · < ak. (Le Lionnais)

At the end of last time we had formulated a statement to the effect that factorizations of
numbers into primes are essentially unique:

If N = p1 · · · pn and N = q1 · · · qm with p1 ≤ p2 ≤ . . . ≤ pn and q1 ≤ q2 ≤ . . . ≤ qm, and
all pi, qj prime, then n = m and pi = qi for every i .

Our idea came down to showing that p1 must equal one of the primes in the list q1, . . . qm.
Then we could cross both numbers off of their list, effectively giving us two prime factor-
izations of the number N/p1, which is smaller than N . Meaning that, by an inductive
hypothesis, both of the lists for N/p1 are the same (up to re-ordering the primes in the
list). So our original lists for N were also the same!

And the fact that p1 appears in the list of the qj ’s we thought, in the end, we could
establish by induction! The question was, how does knowing that p1 is prime help us?
And what exactly would the induction do? The thing that we could imagine changing
was the number of prime factors in N = q1 · · · qm. Making this shorter amounts to setting
aside one of the prime factors, as N = q1(q2 · · · qm). Which gets us started: p1 being a
prime factor of N means that p1|N , so p1|q1(q2 · · · qm) = q1R. So, in essence, we have
p|qR with p and q prime. If we think about p and q (with divisibility on our minds), we
came to realize that there were only two possibilities: either p and q are the same or they
are different! Put a bit differently, either p = q or the only common factor of p and q is 1,
i.e., gcd(p, q) = 1. [In keeping with common usage, especially for any outside reading you
might do for your group project, we introduced the commonly-used notation of (p, q) for
the gcd of p and q. And then tried to avoid using it...] And what our inductively-phrased
claim asserts, really, is that if p is prime, p|N and N = qR with p and q prime, then either
p = q or p|R (and then our inductive assumption will allow us to identify p with one of
the primes in a prime factorization of R).

But since q is prime, we realized that p = q is the same as p|q, so we could rephrase our
assertion as: if p|N and N = qR, then either p|q or p|R (with the added assumption that
q is prime...). And the point to having p prime, we saw, was that the only common factors
that p and q can have are either p or 1 (since p is prime), and gcd(p, q) = p really means
that p|q. What we will employ now is what is usually called proof by contradiction; it is a
time-honored technique for getting extra information to help us reach our conclusion. We
suppose that something we would like to be true is false, in the hopes of getting ourselves
into trouble. In this case, we will suppose that p does not divide q; since p is prime this
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implies that p and q are relatively prime. We then use this extra information to find a way
to show that p must in fact divide R. [A more ‘traditional’ proof by contradiction would
‘deny’ our entire conclusion, i.e., assert that p does not divide q and p does not divide R,
and then get ourselves into trouble. For fun, you might try adapting the argument we
eventually came up with, below, to show that these two assertions imply that p divides 1!]

How do we use that p and q are relatively prime? This means that their gcd is 1, and we
eventually remembered that this meant that we can write 1 as a combination of p and q:
1 = px+ qy for some integers x and y. So what we have then is that N = pd, N = qR and
(if we assume that p does not divide q) we have 1 = px + qy. And what we want to show
is that p must divide R.

So we started kicking things around! 1 = px+qy means that qy = 1−px, so q = (1−px)/y,
so R = N/q = pd/q = pdy/(1 − px) is a multiple of p provided that dy/(1 − px) is an
integer, meaning that (1 − px)|dy. That sounds challenging to establish... N = pd = qR,
so R = pd/q = p(d/q), so p|R so long as d/q is an integer, meaning that q|d. And, no,
we don’t know how to do that, either. Hm, and that didn’t even try to use the fact that
1 = px + qy.

Somewhere in here we also tried to see if a specific example might help us find a pattern
we could exploit. Taking the number N = 23 · 32 · 7 · 23 · 149, whatever it is, and noting
that we could write N = 3R and 7|N , we wanted to figure out that 7|R using only the fact
that we could write 1 as a combination of 3 and 7 (which, we discovered, we could do in
many ways!, as 4 · 7− 9 · 3, 1 · 7− 2 · 3, and 26 · 3− 11 · 7 for starters, settling on 1 · 7− 2 · 3
as being the simplest).We quickly decided, though, that this wasn’t going to help much,
and quietly stopped thinking in terms of specific numbers...

Eventually, though, we realized that our earlier experiences with gcds - and p|R is really
the same as gcd(p, R) = p - showed us that adding and subtracting multiples of p will not
change the fact that the gcd is (or rather, will turn out to be) p. And 1 = px+ qy, written
as 1 − px = qy, sort of shows us that multiples of q have mutiples of p in them that we
can ignore. The goal them becomes how to build multiples of q that have more multiples
of p in them to ignore... And this is precisely what pd = N = qR tells us: R q’s have p’s
in them for us to ignore. From there it was a short walk to the realization that taking
1 = px + qy and multiplying the q by R, to create multiples of p, led us to (since we can’t
really control what happens when we multiply one term by R, we need to multiply all of
the terms by R)

R = R · 1 = R · (px + qy) = Rpx + Rqy = p(Rx) + (qR)y = p(Rx) + (pd)y = p(Rx + dy)

is a multiple of p (!). Which is precisely what we wanted. So we have shown that:

If p is prime, p|qR, and p 6 |q, then p|R .

Or, cast in a more positive light:

If p is prime and p|qR, then either p|q or p|R

since if it doesn’t divide the first factor, q, then it must divide the second factor, R.
From this we can put together our inductive argument about uniqueness of factorizations:
suppose that p is prime, p|N = q1 · · · qm, but p does not appear in the list of the primes
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qi. We get ourselves into trouble by noting that p 6= q1 means that gcd(p, q1) = 1, and
so p|q2 · · · qm. But this product is shorter! So, turning this around, if we construct a
statement Q(m) which says “In any product of m primes N = q1 · · · qm if p|N then p
equals one of the primes qi”, then we have essentially proved the inductive step: with
N = q1 · · · qm, if p 6= q1, then p|q2 · · · qm and so, by the inductive hypothesis, p equals one
of the remaining primes. Together with the initial step (“If N = q1 and p|N then p = q1”,
which is true, because N = q1 is prime, and the only prime that is divisible by the prime
p is, well, p (!), so p = q1) yields our result: if p|N = q1 · · · qn with the qi all prime, then p
equals one of the qi. Our original inductive argument (divide by p and look again!) then
shows that, except for reordering the terms, the factorization of N into primes can be done
in only one way.

In the end, it is gratifying to be able to show that prime factorizations are unique; but the
result that we learned along the way, that if a prime number p divides a product of two
numbers then it must divide one of the two factors, will in the long run be far more helpful!
It will take us a long way toward establishing the truth in general of the observation we
keep making, about powers of a number modulo a prime.

xliii


