Tu 25 October

Math 189H Joy of Numbers Activity Log
Tuesday, October 25, 2011

Winston Churchill: “Men occasionally stumble over the truth, but most of them pick them-
selves up and hurry off as if nothing ever happened.”

Anonymous: “There are 10 kinds of people in the world; those who understand binary
arithmetic and those who don’t.”

Unsolved problem: Can 33 be expressed as the sum of three perfect cubes? Is 33 =
a® + b3 + 3?7 [Note: it is known that if it can be, then at least one of a,b,c must be at
least 10...]

Today our goal was to finish our (twice refined) conjecture: If n is prime and a is relatively
prime to n, then a® ' =1. (Le., n|a® ! —1.) Last time we showed that there was some

exponent k that worked, and that we didn’t really need n to be prime to do that. Our
goal for today is to identify an exponent that will work for any given modulus n, and show
why it works! To do this, we started by looking at the moduli n from 2 through 16, listing
both the numbers relatively prime to n and the exponents k (less than n: we showed last
time that for any one a such a ‘smallish’ k works, although we don’t really know that one
will work for all a...) that ‘work’ for all of them, drawn from our tables of powers mod n,
in the hopes of discovering a usable pattern:

n=2 a=1 k=1

n=3 : a=1,2 k=2

n=4 a=1,3 : k=24

n=>5 : a=1,2,3,4 : k=

n=6 : a=1,5 k=2,4,6

n="17 a=1,2,3,4,5,6 : k=

n==~, a=1,3,5,7 k=2,4,6,8

n=29 a=1,2,4,5,7,8 : k=6

n =10 a=1,3,7,9 : k=4,8

n=11 : a=1,2,3,4,5,6,7,8,9,10 : k=10
n=12 : a=1,5"711 : k=2,4,6,8,10,12
n=13 : a=1,2,3,4,5,6,7,8,9,10,11,12 : k=12
n=14 a=1,3,5,9,11,13 : k=6,12

n=15 a=1,2,4,7,8,11,13,14 : k=4,8,12
n=16 : a=1,3,5,7,9,11,13,15 k=4,8,12,16

What patterns could we see? We noticed that all of the exponents (well, except for the
first one!) were even. We also noticed that the exponents that work in each row are all
multiples of the smallest one in each row; this is an important observation that we will
return to (and exploit) later! Looking at the lists of a’s, we eventually noted that (again,
except for the first row) the number of a’s in each row is also always even. Looking still
deeper, with a little nudge from your instructor (although in your defense, presenting the
same evidence later to one of my fellow faculty members, that person really didn’t hit
upon the pattern, either...), we noted that the number of a’s relatively prime to n was in
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the list of exponents k that work for n. This surely is too weird to be a coincidence (and
you can verify that it happens for still more); moreover, it is consistent with our original
conjecture, since for a prime p there are p—1 numbers between 1 and p (namely, 1 through
p — 1) that are relatively prime to p, and the exponent we expected to work in those cases
was p — 1. So we now made a new (thrice refined) conjecture, adopting the notation

¢(n) = the number of a’s between 1 and n with ged(n,a) = 1; ¢ is called the FEuler
phi-function (or Euler totient function [I looked up the definition of ‘totient’, but it was
completely meaningless to me; it is essentially a made-up word from the 1880’s?]);

Conjecture: For any positive integer n and integer a with gcd(n, a) = 1 we have a?(™ =1.
n

Which leaves us the task of showing this! To do that, we turned to our lists of multiplication
tables modulo n (for underhanded reasons known only to your instructor), and looked at
multiplications of a’s relatively prime to n with one another. Extracting some lines from
each, where for a modulus n and a number a rel prime to n, we listed products of a with
the other numbers rel prime to n, we found:

for n = 14, a = 1, the products were 1,3,5,9,11,13 (i.e., the numbers a in order)

for n = 14, a = 3, the products were 3,9,1,13,5,11
for n = 14, a = 11, the products were 11,5,13,1,9,3
for n = 14, a = 13, the products were 13,11,9,5,3,1

for n = 15, a = 1, the products were 1,2,4,7,8,11,13,14
for n = 15, a = 8, the products were 8,1,2,11,4,13,14,7

for n =6, a = 1, the products were 1,5
for n = 6, a = 5, the products were 5,1

From this data we rather quickly noted a definite pattern: each set of products is just
the list of a’s rel prime to n, written in a different order. Analyzing this further, and
in particular trying to formulate statements which would imply this, we could break this
statement down into two pieces. First, every number that appears on the list is rel prime
to n; second, every number appears exactly once. With the pigeonhole principle in mind,
though, we realized that the second statement is really the same as saying that no a appears
on the list twice; since we are fitting ¢(n) things (the multiples of a) into ¢(n) buckets
(which value we get), knowing we don’t get the same value twice implies that every bucket
has something in it, that is, every number rel prime to n appears (exactly once)!

But these are things we can handle! The first essentially says that if ged(n,a) = 1 =
ged(n, b), then ged(n,ab) = 1 as well. But if ged(n,ab) = d > 1 (usng the tried and true
method of giving ourselves enough room to get ourselves into trouble), then d|n and d|ab.
We would like to then say (since it sounded so familiar) that then d|a or d|b, but that only
worked for d a prime. But d does have a prime factor p > 1. And then since p|d we know
that p|n and p|ab, so we do have p|a or p|b. But then either ged(n,a) > p or ged(n,b) > p,
both of which get us into trouble! So we must have ged(n, ab) = 1. That gives us our first
assertion.

For the second, if we suppose that for a with ged(n,a) = 1 and, for two other numbers
1 < a;,a; < n—1relatively prime to n, we have aa;=aa;, then this means that n|aa;—aa; =
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a(a; — aj). But then since ged(n,a) = 1 we must have n|a; — a;. But since both a; and
a; are small, a; — a; lies between 1 —n and n — 1. And there is only one multiple of n in
that range, namely 0. So a; —a; =0, i.e., a; = a;, as we wanted.

So now we know that for any n and a relatively prime to n, if aq,... ,a, are the numbers
between 1 and n that are relatively prime to n, then, modulo n, the numbers aaq, ... ,aar
are really the numbers aq,...,ay (possibly) written in a different order. But so what?
How does that help us show that a® =1 ? The point is that we now have two different

ways to write the same collection of numbers, and one of those ways (as the multiples of
a) has £ a’s in it! With this observation, motivated by the fact that we are looking for a
way to build a’ (so that we can say something about it), to build a from ¢ numbers that
have a’s in them, we just multiply them together. What we get (because we know that
congruence modulo n ‘likes’ multiplication) is that

(aa1) - - (aa) = a(ay - - ay) =ar---ay

since what order you multiply things together does not affect the resulting product. This
then says that n|a‘(ay---ap) — (a1 ---ag) = (a®* —1)(ay - - - ap). But this is familiar territory
for us now! Each of the a; are relatively prime to n, so we could peel off each one in turn
from the product, knowing that n will divide what we left behind. [A more orderly way to
express this is that an induction argument (on ¢) will show that since each a; is rel prime
to n, then ay - - - ay is rel prime to n; the inductive step is really the argument given three
paragraphs up!] The result is that since each of the a; are rel prime to n, we are left with
nla® — 1, ie., a* = 1, which is precisely what our conjecture stated! So our conjecture is

proved! The result we have now established is known as Euler’s Theorem:

For an integer n, if ¢(n) = the number of integers between 1 and n that are relatively

prime to n, then for any a with ged(n, a) = 1 we have a®™ =1.

All that is left now is to lean back and reap the many rewards of this result. Which we
will begin to do next time.
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