Th 27 October

Math 189H Joy of Numbers Activity Log
Thursday, October 27, 2011

Felix Klein: “Everyone knows what a curve is, until he has studied enough mathematics
to become confused through the countless number of possible exceptions.”

Winston Churchill: “I like pigs. Dogs look up to us. Cats look down on us. Pigs treat us
as equals.”

353% = 15,527,402, 881 = 30* + 120* + 272* + 315% is the only known fourth power that is
the sum of four other (positive) fourth powers.

Last time we reached a milestone of the class: we finished showing that

For any integer n, if ¢(n) = the number of integers between 1 and n that are relatively

prime to n, then for any a with ged(n,a) = 1 we have a®™ = 1.
n

We will spend some time finding many different uses for this result! The first comes from
what this says about prime numbers:

For an prime p, we have ¢(p) = p—1, and so for any a with gcd(p,a) =1 (i.e., a is not a

multiple of p) we have aP~! = 1.
P

Of course, as written, this requires us to know that p is prime. But if you think about the
statement backwards, it says that if a is not a multiple of p, and a?~! is not congruent
to 1 modulo p, then p cannot be prime (and we should probably stop calling it p 7). In
other words, computing ™! modulo n (for a relatively prime to n), and not getting 1 for
an answer, proves that n is not prime. And the big point is, it does so without finding a
factor of n (as a ‘witness’ to its compositeness)! The other big point is that in practice
(and with some work we may be able to show why this is true?) this is very effective at
sniffing out non-primes. That is, ‘usually’ if n is not prime then picking any old base a
(like a = 2) we will find that ™! fails to be 1 modulo n. We fired up Maple and tried
this out with lots of randomly chosen numbers, using the base a = 12, and found that it
was tough to randomly type in a number that wasn’t already a multiple of 3, 13, or 17
(although that was partly just bad luck), and that in our limited experiments we never

found a non-prime n for which 12"~ ! =1.

Not that there aren’t any; in fact, we remembered that we ran across one such computation

back when we originally formulated our conjecture: 10°° = 1 mod 91. In general a non-

prime n for which, for some integer a, it is true that a”~! =1 gets a special name; it is
n

called a pseudoprime to the base a. So our old calculation means that 91 is a pseudoprime
(sometime abbreviated ‘¢-prime’) to the base 10. We know from what we learned before
that n cannot be a ¥-prime to a base that is not relatively prime to n: if ged(n,a) =d > 1,
then d|a™1 as well, so can’t leave remainder 1 on division by d; the remainder will also be
a multiple of d. But it actually is possible for a non-prime number n to be a -prime to
every base a that is relatively prime to n; such numbers are called Carmichael numbers,
in honor of the first person to discover one. That first one is 561 = 3-11-17; a quick check
using Maple showed that it a -prime to every base that we cared to plug in. This means

1

Th 27 October

that our new test for non-prime-ness (compositicity? compositeness?) cannot succeed with
some numbers, unless you hit upon a base a that is a multiple of a factor of n (in which
case you have actually found a factor of n, namely ged(n, a)). Luckily though, Carmichael
numbers appear to be rare; although not too rare: there is a result from the 1960’s or
1970’s that states that for any n large enough (the notation n >> 1 is used as shorthand
for this) there are at least n?/7 Carmichael numbers between 1 and n. Whuch sounds like
a lot! until you think in terms of 100-digit numbers or so; it basically says that there
are about 10** Camichael numbers below 10'°°, which means that if you pick a 100-digit
number a random there is only a 1 in 10°” chance of it being a Carmichael number. Which
is really, really, really, small....

There is actually a characterization of Charmicael numbers n, if you happen to know its
prime factorization; n is a Charmicael number if and only if it is a product n = py - - - pg of
distinct primes p; < - -+ < pg, and if for each prime factor p; we have p; — 1|n — 1. Which,
it turns out, it is tough to arrange! The second smallest Carmichael number is 1105 (as
one of you thoughtfully reported); 1105 = 5-13- 17, and we could verify directly that 4, 12
and 16 all divide 1104.

But this is dwelling on the failures of our new test to detect non-primes! The real point
is that it is usually quite good at determining that a number is not prime. Which is why
when a"~! =1 (and if, we are suspicious, we can test several more bases as well) holds

for several cnhoices of a we can be pretty confident that we have managed to discover a
prime number. [This is, in fact, (almost) exactly what the computers in your instructor’s
basement are doing to find large prime numbers; they find likely candidates by carrying
out precisely these computations.]

But by dwelling on the results of these computations, we almost missed an important fact!
We were happily typing in some pretty big numbers n (up to around 350 digits?), and
telling Maple to to compute the remainder that 127! left on division by n. But 127! is
an incredibly huge number! Even if you stick to ‘tiny’ numbers n, with maybe 15 digits
(that’s what, the hundreds of trillions?), 12" ~! will have hundreds of trillions of digits! And
in fact if you type ‘127 n;” into Maple, it will refuse to compute it, saying ‘Error, numeric
exception: overflow’. The number is just too big. [We actually typed ‘12&"(n — 1) mod
n’... See below!] [Right around here we had a little discussion about the origin of the
word ‘ampersand’, as ‘and, per se, and’, which might or might not actually be true, but
has no bearing on our further discussion...] But the point is that we never really want to
know this number, just it’s remainder on division by n. And because we know that the
remainder of ab mod n can be computed by first computing the remainders of a and b,
multiplying them together, and then taking the remainder of that product, we can carry
out an exponentiation a” !, mod n, as repeated multiplication, without ever multiplying
together numbers bigger than n.

But this still misses part of the point. Repeatedly multiplying by a (and reducing mod n)
still takes too long, if your are going to multiply n—1 a’s together. For a 15-digit number n
(which, remember, we still think of as ‘small’), even if you could do a billion muliplications
per second, it would still take you a million seconds (around 12 days) to finish. And we

li

Th 27 October

were dealing with much larger numbers. But the calculations took Maple almost no time
(we noted that after many such calculations it reported having used 1/10th of a second of
cpu time). Clearly it is being smarter than we were about what it was doing?

The point is that our ‘serial’ view of exponentiation, a* = a - «*~!, multiplying by a one

at a time, takes, well, K — 1 multiplications. But if you try to figure out how to re-use your
work, you can significantly speed up the process. How? Well, basically, our serial view
splits the exponent, k, into the two pieces 1 and k — 1, takes the result of raising a to those
two powers, and multiplies the results together. But if you split k£ into diferent pieces, you
can use the computation of one to help you do the computation of the other faster. The
idea is exemplified by considering k = 2¢; writing this as k = £ + ¢ then a* = a’ - a*, and
by doing effectively half as much work, to compute a’ (mod n), and squaring (which is
just one more multiplcation), we have computed a* in half the time. Of course k needn’t
be even, but it is either 2¢ or 2¢ + 1, so we either square a or we square a’ and multiply

by a (which is just one more multiplication) to compute a”.

Of course, this still leaves the question of how to compute a’ modulo n. But we realized
that if doing this once replaced our work with half as much work, plus 2, then doing it
again would be even better! The basic idea came down to:

To compute a* mod n, write k; = [k/2]| (where, you may remember, || = the ‘floor’
function, the largest integer < z), so k = 2k; + €1, where ¢ = 0 or 1, and then knowing
a® mod n will allow us to (quickly!) compute a* mod n. But then we just continue;
ko = |k1/2], so k1 = 2ks + €2. Eventually we reach k., = 0 (so k,—1 = 0 or 1), and then
by working our way back up the list, we can compute

kq

a® = Aif1A; 410+, where abitt = Ait1,

which requires only one (or two) multiplications modulo n for each turn of the crank. How
many such multiplications will we do? Each k;; is at most half of k;, so k; < k/ 20 [why?
induction!]. So when 2" > k we will have &k, <1 and be done.

Illustrating this with an example, we first tried this with k£ = 15,222,911, but then got
bored with it and started over with £ = 23; we then have 23 =2-114+1, 11 =2-5+1,
5=2-2+1,2=2-1+0. So to compute a®* (mod n), we compute a, a®> = a-a = b,
a® =b%-a=c al =c® a=d, and then a®® = d? - a. all modulo n, of course! And
this computation would require 7 muliplications modulo n, not 22 = 23 — 1. Which may
not sound like much, but doing this for a number k& in the range of 10*® (using the useful
rule of thumb that 20 = 1024 ~ 10%) requires about 50 divisions by two, so computing
a® mod n in this way will require 50 to 100 multiplications mod n. Which is much better
than 10'® of them! This is, in fact, exactly how Maple and other mathematical software
(if they are well-written!) carry out such calculations, and it is exactly what the Maple
command ‘a& "k mod n’ will do.

With this methodology, computing a* mod n becomes very fast, even for ‘economically’
large numbers, making for a very effective test for compositeness, and many other things
besides!

lii

