
Th 3 November

Math 189H Joy of Numbers Activity Log

Thursday, November 3, 2011

David Hilbert: “The art of doing mathematics consists in finding that special case which

contains all the germs of generality.”

Plato: “I have hardly ever known a mathematician who was capable of reasoning.” [It
should be noted, though, that in Plato’s time, astrologers were (also) called mathemati-
cians...]

Goldbach’s Conjecture: Every even number is the sum of two primes. Verified by hand in
1938 to 10,000. Verified by computer (in 2010) to 2 · 1018. Still unsolved!

Today we took a slight break from our steady march towards our goal of building the
machinery needed to understand how the things we are learning impact electronic security
to look at what we called “the number theory in your pocket”. The fact is that we,
and pretty much everything around us, are all numbers, at least as far as many of the
organizations we interact with are concerned. To the government we ‘are’ a social security
number, to businesses we ‘are’ a credit card number, to the grocery store the things
we purchase ‘are’ UPC (which stands for ‘universal product code’) codes [which makes
saying ‘UPC code’ redundant...], our textbook ‘is’ an ISBN (=‘international standard
book number’) number [same problem...!]. These numbers are constantly being scanned
and typed into order forms; so how do we make sure that they are being entered correctly?
The fact is that most of these numbers (with the notable exception of your SSN!) have
a ‘check’ digit built into them, usually the last digit of the number, which is designed
to protect us from the kinds of common errors that people (and machines) make when
entering data; the last digit is designed to detect (and therefore reject) erroneously entered
data. We made ourselves a list of the kinds of errors we might expect to encounter when
transmitting a number to someone else (which I augmented for our log from the Wikipedia
entry for ‘check digit’):

dropping a digit, such as 1234 changed to 134
single digit errors, such as 1 changed to 2

(these are often based on ‘shape’: 3 ↔ 8 , 1 ↔ 7 , 2 ↔ 5 , 6 ↔ 9)
transposition errors, such as 12 changed to 21
twin errors, such as 11 changed to 22
jump transposition errors, such as 132 changed to 231
jump twin errors, such as 131 changed to 232
phonetic errors, such as 60 changed to 16 (“sixty” to “sixteen”)
inserting a digit, such as 1234 changed to 15234
doubling, such as 123 changed to 1223
‘compression’, such as 1223 changed to 123

Of these probably the most prevalent are the single digit and transposition errors, and
most check digits do a good job of detecting such errors. This all lies in the method used
to compute the check digit, which in nearly all implementations use a modular weighted
sum. That is, for a string of digits a1a2 · · ·an, a check digit an+1 is added to the end

lvi

Th 3 November

that is computed by summing specific multiples x1a1 + x2a2 + · · · + xnan of the digits,
modulo a specific modulus N ; typically the check digit an+1 is chosen so that N divides
x1a1 + x2a2 + · · ·+ xnan + an+1.

The design principles involved in choosing weights and modulus can be inderstood by
studying a few examples. For credit cards, which have 16 digits, the method most com-
monly used is called the Luhn algorithm, which uses a modulus of N = 10 and weights
2, 1, 2, 1, . . . , 2, [1] (to tidy things up, we usually think in terms of including the check digit,
with a weight of 1, and think of x1a1 + x2a2 + · · · + xnan + an+1 mod N as a ‘test’ that
the number (with check digit) is ‘valid’; it is valild if the sum is 0 modulo N). In other
words, the credit card number a1a2 · · ·a16 is valid if

2a1 + a2 + 2a3 + a4 + · · ·+ 2a15 + a16 = 2(a1 + a3 + · · ·+ a15) + (a2 + a4 + · · ·+ a16) is a
multiple of 10.

[Several of you reported, though, that this was not true of your own credit card numbers?!]
A slightly different way to think of this is that a16 is chosen so that, when added to the
last digit of 2a1 + a2 + 2a3 + a4 + · · ·+ 2a15, you get 10.

Why does this work to detect common errors? Basically, it detects transposition errors
because it treats adjacent digits differently; if we replace aiai+1 with ai+1ai, our ‘check
sum’ 2a1 + a2 + 2a3 + a4 + · · ·+ 2a15 + a16 will change by (plus or minus) ai − ai+1 (if we
subtract the new sum from the old one), and so, assuming the original number was valid,
so its check sum was a multiple of 10, the only way this new number passes the same test
is if ai − ai+1 is a multiple of 10. But since both digits are between 0 and 9, the only way
this will be true is if ai = ai+1, which means that transposing the digits didn’t change the
number! Similar reasoning enables us to understand the effect of a single digit error: if
ai is replaced by a′

i, then the check sum will change by (plus or minus) either ai − a′

i or
2(ai − a′

i), depending on the positiob of the changed digit. In the first case, this error will
always be detected, since the new sum will not be a multiple of 10; in the second case,
there is one error (out of the 9 possible other digits we could have chosen) that cannot be
detected, namely if ai − a′

i = ±5. All other single digit errors will be detected. So the
Luhn algorithm detects all (adjacent) transposition errors, and 17/18-ths of all single digit
errors.

The key design elements of this are that adjacent numbers are given different weights, and
the weights mostly don’t interfere with detecting a single digit error, in the sense that
N |w(a − b) usually allows us to conclude that N |a − b, which in turn implies that a = b,
because the numbers a and b are fairly small. We have, in fact, seen how to insure that
N |w(a − b) implies N |a − b, by knowing that gcd(w, n) = 1; the next check digit scheme
is designed to use this to its ultimate.

An ISBN-10 number is a 10-digit number a1 · · ·a10 with the 10-th digit a check digit.
The check sum uses weights (10, 9, 8, . . . , 2, 1) and modulus 11, and so an ISBN number
is valid if 10a1 + 9a2 + · · · + 2a9 + a10 ≡

11
0. [We tested this with the instructor’s copy

of The Penguin Dictionary of Curious and Interesting Numbers.] This causes one slight
problem, though; since 10a1 + 9a2 + · · ·+ 2a9 can be congruent, mod 11, to 0 through 10,
the check digit a10 must be able to take on the values 0 and 10 through 1 to make the sum

lvii

Th 3 November

a multiple of 11. But 10 isn’t a ‘digit’ ! The convention chosen to deal with this is that if
10a1 +9a2 + · · ·+2a9 ≡

11
1, so that the check digit ‘should’ be 10, the check digit is denoted

‘X’. [One of you, it turned out, had a book along that had check digit ‘X’ !] The additional
overhead this causes is more than offset by the error-detecting abilities of this method;
since 11 is prime, it is relatively prime to every weight being used in this check sum, and,
even more, is relative prime to the difference of any two of the weights. This means that
the check sum can detect every single digit error, since 11|w(a− b) and 1 ≤ w ≤ 10 implies
that 11|a− b. It can also detect every trasposition error, even if the digits are not adjacent
to one another, since the difference between the two check sums will be (plus or minus)
(wi − wj)(aj − ai), and so the only way that both check sums will be divisible by 11 is if
11|(wi −wj)(aj − ai); since |wi −wj | ≤ 10, this means 11|aj − ai, so ai = aj. So the ISBN
check digit can detect all jump transposition errors, as well.

A final check digit scheme we dissected was the check digit used in UPCs. UPCs can have
varying lengths, but a typical code has 12 digits, with the last digit the check digit. The
first digit represents the basic type of product, the next five are a code for the manufacturer,
and the next five after that represent the manufacturer’s products, followed by the check
digit. It uses a weighted sum scheme, with weights (3, 1, 3, 1 . . . , 3, 1) and a modulus of 10.
That is, a UPC-12 code a1a2 · · ·a12 is valid if 3a1 +a2 +3a3 + · · ·+3a11 +a12 ≡ 0 mod 10.
[We tested this on a box of pencils.] This code, because all of the weights are relatively
prime to 10, can detect all single digit errors; but because adjacent weights differ by 2,
which is not relatively prime to 10, it cannot detect all transposition errors. And because
every other weight is the same, it cannot detect jump transposition errors at all. This
trade-off - better detection of single digit errors, worse for transposition errors (compared
to the Luhn algorithm) - is (probably!) a choice made due to the fact that UPC codes are
scanned, so the machine is unlikely to transpose digits; catching single digit errors is more
important when transposition errors are less likely!

In 2007, ISBNs moved to a 13-digit ISBN-13 number, with a check digit computed just as
with UPCs, using weights (1, 3, 1, 3, . . . , 3, 1) and a modulus of 10. (Basically, they really
became UPCs; what information the earlier digits ‘encode’ is just slightly different.)

As we originally remarked, US social security numbers do not include a check digit. There
are some interesting restrictions on SSNs, though: no SSN starts with 666, or 000, and
in fact xxx-00-xxxx and xxx-xx-0000 are also invalid SSNs. It used to be that the first
three digits of your SSN described the location where your number was issued to you,
but effective July, 2011, this is no longer the case; new SSNs will be issued randomly.
Many other countries do incorporate a check digit into the personal/taxpayer identification
numbers that they issue to their citizens. Australia, for example, employs a check digit
computed using a weighted sum, but the weights used are officially a secret! (This is
despite the fact that they have shared the secret with some 20,000 employers throughout
the country, so that they can verify their employee’s ID numbers...)

The point, really, is that modular arithmetic is taking place around you all the time! And
the fact that n|ab and gcd(a, n) = 1 implies n|b is a central fact underlying the effectiveness
of all of these check digit schemes. Little did Euler and his colleagues know that they were
laying the groundwork for modern commerce?

lviii

