
Tu 15 November

Math 189H Joy of Numbers Activity Log

Tuesday, November 15, 2011

Jason Love: “The microwave oven is the consolation prize in our struggle to understand

physics.”

John von Neumann: “In mathematics you don’t understand things. You just get used to

them.”

Today we continued to talk about the mechanics of encrypting and decrypting messages,
and how hard it might be to decrypt a message without prior knowledge of the decryption
process. Last time we saw shift ciphers, which are relatively insecure; trying every single
possible shift (since to decrypt the shift x 7→ x+a mod n we just shift back, y 7→ y−a mod
n) would not take very long and would eventually recover the correct value of a (instantly
enabling you to encrypt your own messages, as well!). The problem is that the amount
of work required to test all possible decryption procedures (assuming that you know the
basic structure of the process) is not high enough; a ‘brute force’ attack will succeed in a
reasonable amount of time.

To combat this, we can build encryption mechanisms involve a larger ‘space’ of built-in
choices. For example, we can move from just adding a constant x 7→ x + a to a more
involved function, like an affine function x 7→ ax + b mod n [what you would probably
call a linear function?]. This is called an affine shift cipher, and gives us greater flexibility
in choosing parameters, increasing the number of possible decryption procedures. But in
order to have a decryption procedure, we need to know that we can ‘undo’ the affine shift;
that is, recover x from ax + b. For this we can turn to a little algebra: we learn that if
y = ax+ b, then we can figure out how to write x in terms of y by ‘inverting’ the equation.
ax = y− b, so x = (1/a)(y− b) allowing us to recover x from y, i.e., decrypt the encrypted
message y. Except for one little thing; we are working modulo n, and division might not
make sense? What is 1/a, anyway? It is the number c so that ca = 1. What we really
what to do is to find c so that ca ≡

n
1. And not every a has such an inverse modulo n. As

we saw, ca≡
n

1 means that n|ca− 1, so ca− 1 = nk for some integer k, and so 1 = ca−nk.

This took us all the way back to our first explorations of common factors; that fact that
1 can be expressed as a combination of a and n means that a and n are relatively prime.
And if they are relatively prime, then we can find such a c, using the Euclidean algorithm!
So, for example, since 7 and 47 are relatively prime, if we encrypt using the affine shift
cipher x 7→ 7x + 24 mod 47, then we can build the decryption function by inverting 7
modulo 47, using the Euclidean algorithm:

47 = 6 · 7 + 5 , 7 = 1 · 5 + 2 , 5 = 2 · 2 + 1 , so

1 = 5 − 2 · 2 = 5 − 2 · (7 − 1 · 5) = 3 · 5 − 2 · 7 = 3(47 − 6 · 7) − 2 · 7 = 3 · 47 − 20 · 7 , so

20 · 7 = 3 · 47 − 1, so (−20) · 7 = 1 − 3 · 47 and mutiplication by −20 (hm, not by
20 as asserted in class!?) will ‘undo’ mutiplication by 7, modulo 47. If you don’t like
negative numbers, add another 47, since this won’t change anything mod 47, to get c = 27.
So 27 · 7 ≡ 1 mod 47, and so y 7→ 27(y − 24) mod 47 is the decription function for
x 7→ 7x + 24 mod 47. It is worth noting that the decryption is another affine map!

lxiv

Tu 15 November

27(y − 24) = 27y − 27 · 24 ≡ 27y + 20 · 24 = 27y + 480 ≡ 27y + 10 mod 47, so if
e(x) = 7x + 24 mod 47, then d(y) = 27y + 10 mod 47.

How many affine shift functions are there? Since we need gcd(a, n) = 1 in order to have a
decryption function, there are φ(n) choices for a, and n choices for b (although we agreed
that a = 1 and b = 0, so e(x) = 1 · x + 0 = x was probably a bad choice of encryption!), so
there are nφ(n)−1 choices of affine cipher, and so the same number of choices of decryption
function. For n = 26 = 2 · 13, φ(n) = (2 − 1)(13 − 1) = 12, giving us 12 · 26 − 1 = 285
possible shift ciphers for a 26-letter alphabet. Better th an 25, for shift ciphers, but still
not very great!

In general, what we require out of a cipher that encrypts one letter/character at a time,
like the shifts and the affine shifts, is really a function, which you can picture as an
input/output table, which is a column of the symbols to encrypt together with the values
each symbol will be assigned listed to the right of it. Encryption really just reads the table
from left to right, and decryption reads it from right to left! [Although we usually reorder
the list so that the things on the right come in some sensible order, to make decryption
faster.] In the above we were using an affine map mudulo n to determine the values to fill
in to the right of our symbols, but really, any function will do just as well. Or almost any
function, anyway. We need to know that we can decrypt the message, which really means
that we cannot assign the same value to two different symbols we want to encrypt. That
means that the function from symbols to encrypt to symbols used in the encrypted message
(usually the same set of symbols) cannot take the same value twice, meaning that if we
treat the symbols used in encryption as buckets, there is no more than one symbol in each
bucket. By the pigeonhole principle, this would mean that every bucket has exactly one
symbol in each bucket. A map from {symbols} → {symbols} that is like this - every symbol
is the image of exactly one symbol under the function - is called a permutation. There are
precisely n! permutations of n symbols. [Why? Induction!] If we use permutations of the
26 letters as our encryption, then decryption is also (the inverse) permutation; so a brute
force attack to recover a message by trying all possible permutations will (using the notion
that, on ‘average’, you will have to try half of the possiblilties before you expect to hit upon
the right one) requires, typically, 26!/2 = 201, 645, 730, 563, 302, 817, 792, 000, 000 ≈ 2·1026
attempts. Which is a lot! Unfortunately, since under a scheme like this every letter would
get encrypted to the exact same letter every single time it appeared, such a scheme is
vulnerable to ‘frequency analysis’ attacks (which we will discuss later if time permits).

At this point it was asked if we could make things more secure by stringing together
several encryption functions. The answer was, sort of, yes and no. Combining two affine
shifts, really only just gives us an affine shift: a1(a2x + b2) + b1 = (a1a2)x + (a1b2 + b1);
the composition of two linear functions is a linear function. And if you string together
two permutations, you get another permutation. If you have two affine ciphers that use
different moduli, you can improve things; the result is (I think!) not an affine function
anymore. And combining together several different encryption methods into one big one is a
very common method for building a cryptosystem (as an encryption/decryption procedure
is often called), especially if the component systems have very different characteristics;
combining them is often thought of as taking advantage of each systems strengths (or

lxv

Tu 15 November

rather, compensating for one system’s weakness by ‘hiding’ it under another’s strength).

Another more important worry, common with all ‘permutation ciphers’ (and many others),
is that knowing the encryption function tells you precisely how to decrypt messages, as
well: to encrypt you need the table, to read left to right, but to decrypt you only need
to read the table backwards, from right left, instead. So everybody who has a knowledge
of how to encrypt messages to send to you holds the information on how to decrypt
messages, and must therefore keep that information secret and protected, otherwise your
encryption method is not secure. This was for a long time viewed as a major flaw to such
encryption schemes. It was not until 1978, however, that Rivest, Shamir, and Adelman
[although read the Wikipedia entry of the RSA algorithm; it was reported that a British
intelligence analyst, Clifford Cocks, had found a roughly equivalent procedure in 1973]
reported an encryption/decryption scheme for which, essentially, complete knowledge of
how a message was to be encrypted did not reveal how to build the decryption function.
That is, you can tell the entire world how you are going to encrypt your messages, and
your decryption method (which you alone know) will remain secure. And it is all based
on Euler’s Theorem!

The basic idea is that since, if gcd(a, n) = 1 we know that aφ(n)≡
n

1, we can [as some of you

discovered and used on the most recent exam!] carry out computations of exponents ak mod
n by modifying k. The basic idea, for us, is that since a1≡

n
a, aφ(n)+1 = aφ(n)a1 ≡ 1·a1 = a,

as well. And we can continue to add multiple of φ(n) to the exponent without changing
things, as well: akφ(n)+1 ≡

n
a for every (well, OK, positive) integer k.

What Rivest, Shamir, and Adelman did was to say, ‘Well, what if we write kφ(n) + 1 as a
product, kφ(n)+1 = ed. Then a≡

n
akφ(n)+1 = aed = (ae)d = bd (for b≡

n
ae), so bd≡

n
a when

b ≡
n

ae. The idea is that we can then ‘hide’ a, by taking a power of it, mod n, as b = ae

mod n, and then recover a, from the ‘encrypted’ number b as a ≡
n

bd. That is, raising to

the power d, mod n, is the decryption function for raising to the power e, mod n. [That is
true, at least, when the ‘message’, a, is relatively prime to n (oh!, and smaller than n (!)).]

And what does it take to do all of this? To create the pair e, d, we need to know φ(n).
To encrypt, you need to know e and n. And to decrypt, you need to know d and n. The
question is, does the person who knows how to encrypt have the information to build the
decryption function? That is, knowing e and n, can you recover d? As we shall see, since
φ(n) is used to build e and d (or, as we look a little deeper, to build d from e), the question
boils down to, can someone who knows n determine the value of φ(n)? To which the
answer, of course, is ‘YES!’, because we gave a formula for φ(n) (!). The fun part comes
when we look deeper at what we used to compute φ(n)....

lxvi

