
Math 203 Contemporary Mathematics

Topics for the first quiz: Check Digit Systems and Modular Arithmetic

To do:

Compute the check digit from the description of a system.

Recover a missing digit knowing the remainder of the digits (detect single digit errors).

Describe how a system can or cannot detect one of the two typical errors made in entering

a number with a check digit: single digit errors and the transposition of two adjacent

digits.

Main tools: solve a ≡ r ( mod m ) for r (i.e., find remainders); solve cx+r ≡ 0 ( mod m)

for x.

A unifying language for check digit systems: modular arithmetic.

Starting point: quotients and remainders. Given two whole numbers a and m, there are

unique numbers q (the quotient) and r (the remainder) with 0 ≤ r ≤ m − 1 satisfying

a = q · m + r . Two ways to compute:
a

m
= q +

r

m
, so q=the integer part of

a

m
(the part

to the left of the decimal point) and the remainder r = m
r

m
is m times the part to the

right of the decimal point. Or: repeatedly subtract/add multiples of m to a until you get

a number between 0 and m− 1; that is r, and then a− r is a multiple of m, and q can be

recovered by dividing. (That is: find multiples of m so that a − qm = r is between 0 and

m − 1, then r must be the remainder and q must be the quotient!)

a and b are congruent mod m (a ≡ b ( mod m )) if both have the same remainder on

division by m; that is, a − b is a multiple of m (notation: m|a − b , m divides a − b).

The idea: a number is really the “same” as its remainder (the number line is “wrapped

around” a circle going from 0 to m − 1).

Basic facts: if a ≡ b ( mod m ) and b ≡ c ( mod m ) then a ≡ c ( mod m ) (i.e., all

three have the same remainder mod m). If a ≡ b ( mod m ) and c ≡ d ( mod m ), then

a + c ≡ b + d ( mod m ), a − c ≡ b − d ( mod m ), and a · c ≡ b · d ( mod m ) (the

remainder of the sum is the sum of the remainders, etc.).

In the language of modular arithmetic, some popular check digit systems:

A basic sum check system: digits a1a2 . . . ak, with ak=check, chosen so that

a1 + a2 + · · · + ak ≡ 0 ( mod 10 ).

UPC: digits a1a2 . . . a11a12, with a12=check, chosen so that

3a1 + a2 + 3a3 + · · ·+ 3a11 + a12 ≡ 0 ( mod 10 ). [groceries]

ISBN-10: digits a1a2 . . . a9a10, with a10=check=0, . . . , 9, X (X = 10), chosen so that

10a1 + 9a2 + 8a3 + · · ·+ 2a9 + a10 ≡ 0 ( mod 11 ). [books]

LUHN: digits a1a2 . . . a15a16, with a16=check, chosen so that

b1 + a2 + b3 + · · · + b15 + a16 ≡ 0 ( mod 10 ), where bi = 2ai if 2ai < 10, otherwise

bi = 2ai − 9. [credit cards]

mod 9 check: digits a1a2 . . . ak, with ak=check =0, . . . , 8, chosen so that



the k-digit number a1a2 . . . ak ≡ 0 ( mod 9 ). [euro notes, Visa traveler’s checks]

mod 7 check: digits a1a2 . . . ak, with ak=check =0, . . . , 6, chosen so that

the k-digit number a1a2 . . . ak ≡ 0 ( mod 7 ). [UPS tracking, airline tickets]

mod m check: digits a1a2 . . . ak, with ak=check =0, . . . , m − 1, chosen so that

the k-digit number a1a2 . . . ak ≡ 0 ( mod m ).

Finding the check digit: call the check digit x and compute the appropriate sum; typically

we end up solving a+x =multiple of m, by finding the remainder r of a mod m and solving

r + x = m.

Finding a missing/obliterated digit amounts to giving the unknown digit a name, x, and

computing the sum; we end up solving cx + a ≡ 0 ( mod m ). Basic trick: find d (if we

can!) so that dc ≡ 1 ( mod m ); then 0 ≡ d(cx+a) ≡ (dc)x+(da) ≡ (1)x+(da) ≡ x+(da) (

mod m ), and solve as above! Or, by “brute force”: plug each number from 0 to m− 1 in

for x in cx + a to find all of the x which gives a multiple of m. Finding the d in the first

approach can be done the same way; compute all of the dc − 1 for d = 0, . . . , m − 1 until

you find one that is a multiple of m.

For example, for UPC, can use d = 7: 7 · 3 = 21 ≡ 1 ( mod 10 ). For ISBN-10, every

number 1, . . . , 10 has a corresponding number (e.g., to recover a6 solve 5a6 + a ≡ 0 (

mod 11 ), and 9 · 5 = 45 = 44 + 1 ≡ 1 ( mod 11 ), so a6 + 9a ≡ 9 · 5a6 + 9a ≡ 0 (

mod 11 )).

Being able to recover a missing digit means we can detect changes in that digit’s position:

if there is only one answer, then any other answer would not yield something ≡ 0, unless we

change the check digit! If more than one answer will work, then the system cannot detect

the change of one answer to the other; the check digit remains the same (E.g., change 0 to

9 in the mod 9 system.)

We can test a system to see if it can detect transposition errors, by subtracting the two

equations for the checks. For example, with UPC, transposing the first two digits cannot

be detected if

3a1 +a2 +3a3 + · · ·+3a11 +a12 ≡ 0 ( mod 10 ) and 3a2 +a1 +3a3 + · · ·+3a11 +a12 ≡ 0 (

mod 10 ). Subtracting, we get 2a1−2a2 ≡ 0 ( mod 10 ), which requires a1−a2 = multiple

of 5. So, e.g., UPC cannot detect the transposition of a 2 and a 7...

Simplifying the computation of a mod 9 check digit: 10 ≡ 1 ( mod 9 ), so 100 = 10 · 10 ≡

1·1 = 1 ( mod 9 ), and so on, so a1a2 . . . ak = a1 ·(10)k−1+· · ·ak−1 ·10+ak ≡ a1+· · ·+ak.

Since we can always throw out multiples of 9 in these computations, we can throw out

digits that add up to 9 (casting out 9’s).

Simplifying the computation of a mod 7 check digit: 1 ≡ 1 ( mod 7 ), 10 ≡ 3 ( mod 7 ),

100 = 10 · 10 ≡ 3 · 3 = 9 ≡ 2 ( mod 7 ), 1000 = 100 · 10 ≡ 2 · 3 = 6 ( mod 7 ), and so on

[the pattern, we can work out, is 1, 3, 2, 6, 4, 5, 1, 3, 2, 6, 4, 5, . . . ], so

a1a2 . . . ak = a1 · (10)k−1 + · · ·ak−1 ·10+ak ≡ ak +3ak−1 +2ak−2 +6ak−3 + · · · ( mod 7 ).

A similar list of numbers can be created for any modulus.


