
Math 208

Topics for �rst exam

Chapter 11: Functions of Several Variables

x1: Functions of two variables

Function of one variable: one number in, one number out. Picture a black box; one
input and one output.

Function of several variables: several inputs, one output. Picture a quantity which
depends on several di�erent quantities. E.g., distance from the origin in the plane:

distance = d =
p
x2 + y2

depends on both the x- and y-coordinates of our point.

Our goal is to understand functions of several variables, in much the same way that
the tools of calculus allow us to understand functions of one variable. And our basic tool is
going to be to think of a function of several variables as a function of one variable (at a
time!), s ithat we can use those tools to good e�ect.

x2: 3-space
One of the best ways to understand a function is to graph it. for one variable, y =

f(x), this means to plot all of the pairs of points (x; f(x), where x is in the domain of f .
For functions of two variables, z=f(x; y), we need to plot all triples (x; y; f(x; y). We need
to build our graphs in 3-space.

Cartesian coordinates: three axes, each perpendicular to one another, all meeting at the
origin (0,0,0). Axes are labelled by the right hand rule; the thumb, fore�nger, and middle
�nger of the right hand point in the x, y, and z directions, respectively. The point (a; b; c) is
the one reached from the origin by moving a units in the direction of the (positive) x-axis,
then b units in the y direction, and then c units in the z direction.
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The distance between points (a,b,c) and (x,y,z) is given by a formula very similar to
the one for the plane:

d =
p
(x� a)2 + (y � b)2 + (z � c)2

So, e.g., the points satisfying x2+ y2+ z2 = 9 are all of the points with distance 3 from
the origin (0,0,0), i.e., they form a sphere of radius 3, centered at the origin.

x3: graphs of functions of two variables

We know what such a graph is; but how do we see what it looks like? One answer is
to think of it as a function of one variable (at a time!).

If we set y = c=constant, and look at z = f(x; c) , we are looking at a function of
one variable, x, which we can (in theory) graph. This graph is what we would see when
the plane y = c meets the graph z = f(x; y) ; this is a (vertical) cross section of our graph
(parallel to the plane y = 0, the xz-plane). Similarly, if we set x = d=constant, and look



at the graph of z = f(d; y) (as a function of y), we are seeing vertical cross sections of our
original graph, parallel to the yz-plane. Several of these x- and y-cross sections together
can give a very good picture of the general shape of the graph of our function z=f(x; y) .

Some of the simplest functions to describe are linear functions; functions havng equa-
tions of the form z=ax+by+c . Their cross sections are all lines; the cross sections x =const
all have the same slope b, and the y-cross sections all have slope a.

Another simple type of function is cylinders; these are functions like f(x; y) = y2 which,
although we think of them as functions of x and y, the output does not depend on one of
the inputs. Cross sections of such functions, setting equal to a constant whichever variable
does not change the value of the function, will all be identical, so the graph looks likecopies
of the exact same function, stacked side-by-side.

x4: Contour diagrams

The cross sections of the graph of a function are obtained by slicing our graph with
vertical planes (parallel to one of our coordinate planes). But we could also use horizontal
planes as well, that is, the planes z=constant. In other words, we graph f(x; y) = c for dif-
ferent values of the constant c. These are called contour lines or level curves for the function
f , since they represent all of the points on the graph of f which lie on the same horizontal
level (the term contour line is borrowed from topographic maps; the lines represent the level
curves of the height of land). These have the advantage that they can be graphed together
in the xy-plane, for di�erent values of c, because the level curves corresponding to di�erent
values of c cannot meet (a point (x; y) on both level curves would satisfy c = f(x; y) = d,
so f would not be a function....)

A collection of level curves also gives a good picture of what the graph of our function
f looks like; we can imagine wandering through the doman of our function, reading o� the
value of the function f by looking at what level curve we are standing on. We usually draw
level curves for equally spaced values of c; that way, if the level curves are close together,
we know that the function is changing values rapidly in that region, while if they are far
appart, the values of the function are not varying by a large amount in that area.
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We usually, for convenience, draw the level curves of f on a single xy-plane (since we can
keep them somewhat separate), labelling each curve with its z-value. We could reconstruct
a picture of the graph of f by simply drawing the level curve f(x; y) = c on the horizontal
plane z = c in 3-space.

x5: Linear functions
Just as lines play an important role in the 1-variable theory of calculus (e.g., as tangent

lines to functions), linear function play an important role in the several variable theory.
The most general equation for a plane in 3-space is

ax+ by + cz = d , where a; b; c and d are constants,



although typically, our planes will come in the form z = ax+ by + c. The number a is
called the x-slope, since it tells us how much z changes if we move 1 unit to the right in the
x-direction. For similar reasons, b is called the y-slope.

Typically, there is exactly one plane passing through any three particular points in
3-space (unless they happen to line up in a line, then there are many planes possible). Later
we will see how to determine an equation for this plane.

We can also completely describe a plane by knowing a point (x0; y0; z0) on the plane,
and its x-slope m and y-slope n; the equation for the plane is then

z = z0 +m(x� x0) + n(y � y0)
This will often be our method for �nding equations of planes, since it is these three

pieces of information which we will know when trying to compute the tangent plane to the
graph of a function, as we shall see.

If we look at the level curves of a linear function, z = ax+ by+ c = d = constant, they
are a collection of parallel lines; if we choose equally spaced horizontal levels, they will be
equally spaced parallel lines.

x6: Functions of more than two variables

There is of course no reason to stop with two variables for a function. An expression
like F =F (M;m; r) = GMm=r2 can be thought of as a function describing F as a function
of M , m, and r (and G!). When we think of the graph of this function (as a function of the
�rst three variables), its graph will live in 4-space! However, we can still get an impression
of what the function looks like, by graphing F (M;m; r) = c = constant, for various values
of c. These are level surfaces for the function f . We can get a picture of what the level
surfaces look like by taking cross sections! Or we could look at each level surface's level
curves.

Chapter 12: Vectors

x1,2: Vectors
In one-variable calculus, we make a distinction between speed and velocity; velocity has

a direction (left or right), while speed doesn't. It is the size of the velocity. This distinction
is even more important in several variable calculus, and motivates the ntion of a vector.

Basically, a vector ~v is an arrow pointing from one point in the plane (or 3-space or ...)
to another. A vector is thought of as pointing frm its tail to its head. If it points from P to
Q, we call the vector ~v =

�!
PQ.

A vector has both a size (= length = distance from P to Q) and a direction. Vectors
that have the same size and point in the same direction are often thought of as the same,
even if they have di�erent tails (and heads). Put di�erently, by picking up the vector and
translating it so that its tail is at the origin (0,0), we can identify ~v with a point in the
plane, namely its head (x; y), and write ~v = (x; y). If ~v goes from (a; b) to (c; d), then we
would have ~v = (c� a; d� b). The length of ~v = (a; b) is then jj~vjj = p

a2 + b2.
In 3-space we have three special vectors, pointing in the direction of each coordinate

axis (in the plane there are, analogously, two); these are called
~i = (1,0,0), ~j = (0,1,0), and ~k = (0,0,1)

These come in especially handy when we start to add vectors. There are several di�erent
points of view to vector addition:

(1) move the vector ~w so that its head is on the tail of ~v; then the vector ~v+~w has tail
equal to the tail of ~v and head equal to the head of ~w;

(2) move ~v and ~w so that their tails are both at the origin, and build the parallelogram
which has sides equal to ~v and ~w; then ~v+~w is the vector that goes from the origin to the



opposite corner of the parallelogram;
(3) if ~v = (a; b) and ~w = (c; d), then ~v+~w = (a+ c; b+ d)
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We can also subtract vectors; if they share the same tail, ~v�~w is the vector that points
from the head of ~w to the head of ~v (so that ~w+(~v�~w) = ~v). In coordinates, we simply
subtract the coordinates.

We can also rescale vectors = multiply them by a constant factor; a~v = vector pointing
in the same direction, but a times as long. (We use the convention that if a < 0, then a~v
points in the opposite direction from ~v.)

Using coordinates, this means that a(x; y) = (ax; ay) . To distinguish a from the
coordinates or the vector, we call a a scalar.

All of these operations satisfy all of the usual properties you would expect:

~v+~w = ~w+~v
(~v+~w)+~u = ~v+(~w+~u)
a(b~v) = (ab)~v
a(~v+~w) = a~v+a~w

Of course there is nothing special in all of this about vectors in the plane; all of these
ideas work for vectors in 3-space, or 4-space, or .....

x3: Dot products
One thing we haven't done yet is multiply vectors together. It turns out that there are

two ways to reasonably do this, serving two very di�erent sorts of purposes.
The �rst, the dot product, is intended top measure the extent to which two vectors ~v

and ~w are pointing in the same direction. It takes a pair of vectors ~v = (v1; : : : ; vn) and ~w
= (w1; : : : ; wn), and gives us a scalar ~v � ~w = v1w1 + � � �+ vnwn.

Note that ~v � ~v = v2
1
+ � � �+ v2n = jj~vjj2. In general, ~v � ~w = jj~vjj � jj~wjj � cos(�), where �

is the angle between the vectors ~v and ~w (when they have the same tail); this can be seen
by an application of the Law of Cosines. This in turn allows us to compute this angle:

The angle � between v and w = the angle (between 0 and � with cos(�) = hv; wi=(jjvjj �
jjwjj)

The dot product satisfy some properties which justify calling it a product:
~v � ~w = ~w � ~v
(k~v) � ~w = k(~v � ~w)
~v � (~w + ~u) = ~v � ~w + ~v � ~u
Two vectors are orthogonal (= perpendicular) if the angle � between them is �=2, so

cos(�)=0; this means that ~v � ~w = 0. We write ~v?~w.

We've seen that it usually take three pieces of information to describe a plane in 3-space
(3 points in the plane, or a point and the x- and y-slopes), however, using dot products, we
can describe it using only two:



Every plane has a normal vector ~n; ~n is orthogonal to the vector
�!
PQ for any pair

of points P and Q in the plane. For example, the vector ~k is perpendicular to the xy-
plane, sine it is perpendicular to every vector of the form (a; b; 0). Given such a normal
vector ~n and a point (x0; y0; z0) in the plane, every other point in the plane must satisfy
~n � (x� x0; y � y0; z � z0) = 0; writing this in coordinates gives the equation for the plane;

a(x� x0) + b(y � y0) + c(z � z0) = 0, where ~n = (a; b; c)
This means that if we are given the equation of the plane, we can quickly read o� what

the normal vector for the plane is, as well.

Another application: projecting one vector onto another.
The idea is to �gure out how much of one vector ~v points in the direction of another

vector ~w. The dot product measures to what extent they are pointing in the same direction,
so it is only natural that it plays a role.

What we wish to do is to write ~v = c~w + ~u, where ~u ? ~w (i.e., write ~v as the part
pointing in the direction of ~w and the part ? ~w). By solving the equation (~v � c~w) � ~w =
0, we �nd that c = (~v � ~w)=(~w � ~w).

We write c~w = proj~w~v =
~v � ~w

~w � ~w
~w=

~v � ~w

jj~wjj
~w

jj~wjj = (orthogonal) projection of ~v onto ~w

~u = ~v � c~w !

x4: The cross product
We saw how to use the dot product to give an equation for a plane, using a normal

vector for the plane The only question is, how do we �nd the normal vector, from the usual
pieces of information we will know about the plane? One answer is given by the cross
product.

One ingredient we will need: The area of a parallelogram with sides the vectors ~v and
~w :

Area = (bases�(height) = jj~wjj � h = jj~wjj � jj~vjj � sin(�) 9from triginometry).

Now, for no apparent reason, we de�ne, for ~v = (v1; v2; v3) and ~w = (w1; w2; w3),
~v � ~w = (v2w3 � v3w2;�(v1w3 � v3w1); v1w2 � v2w1)

= (v2w3 � v3w2)~i� (v1w3 � v3w1)~j + (v1w2 � v2w1)~k
We do this because, it turns out, (~v � ~w) ? ~v and (~v � ~w) ? ~w . [This is just a long

tedious computation; take the dot products!] Also, a similar computation will produce
jj~v � ~wjj = jj~vjj � jj~wjj � sin(�) = the area of that parallelogram!

How do you rembmer this formula? Most people remember it using the notation

~v � ~w =

������

~i ~j ~k
v1 v2 v3
w1 w2 w3

������
=

����
v2 v3
w2 w3

����~i�
����
v1 v3
w1 w3

����~j +
��
��
v1 v2
w1 w2

����
~k

where

����
v2 v3
w2 w3

���� = v2w3 � v3w2, etc.

The cross product satis�es the following equalities:
~v � ~w = �~w � ~v
(k~v)� ~w = k(~v � ~w)

One immediate application is the equation for a plane:
To �nd the plane through the three points P , Q, and R in 3-space, look at the vectors

~v =
�!
PQ and ~w =

�!
PR . These are vectors between points in our plane, and so they give a

pair of directions in the plane. They then must both be perpendicular to the normal vector
~n for the plane. But we know that they are both perpendicular to ~v � ~w, and so ~v � ~w
must be perpendicular to the plane. In other words, we can choose our normal vector to be



~v � ~w. Using one of our original points (P , say) as a point in the plane, we can write down
the equation for the plane using our dot product equation, above.

Chapter 13: Di�erentiation

x1: Partial derivatives
In one-variable calculus, the derivative of a function y = f(x) is de�ned as the limit of

di�erence quotients:

f 0(x) = lim
h!0

f(x+ h)� f(x)

h
and interpreted as an instantaneous rate of chage, or slope of tangent line.
But a function of two variables has two variables; which one do you increment by h to

get your di�erence quotient? The answer is both of them, one at a time. In other words,
a function of two variables z = f(x; y) has two (partial) derivatives:

@f

@x
= lim

h!0

f(x+ h; y)� f(x; y)

h
and

@f

@y
= lim

h!0

f(x; y + h)� f(x; y)

h

Essentially,
@f

@x
is the derivative of f , thought of solely as a function of x (i.e., pretending

that y is a constant), while
@f

@y
is the derivative of f , thought of solely as a function of y.

Di�erent viewpoint, same result:
For one variable calculus f 0(x) is the slope of the tangent line to the graph of f . As we

shall see, The graph of a function of two variables has something we would naturally call a
tangent plane, and one way to describe a plane is by computing its x- and y-slopes, i.e, the
rate of change of f solely in the x- and y- directions. But this is precisely what the limits

above calculate; so
@f

@x
will be the x-slope of the tangent plane, and

@f

@y
will be the y-slope.

The basic picture here is:

Just as with one variable, there are lots of di�erent notations for describing the partial
derivatives: for z = f(x; y),

@f

@x
=

@

@x
(f) =

@z

@x
=

@

@x
(z) = Dx(f) = Dx(z) = fx = zx

x2: The algebra of partial derivatives
The basic idea is that since a partial derivative is `really' the derivative of a function of

one variable (the other `variable' is really a constant), all of our usual di�erentiation rules
can be applied. so, e.g,

@

@x
(f + g) =

@f

@x
+

@g

@x

@

@y
(f + g) =

@f

@y
+

@g

@y
@

@x
(c � f) = c

@f

@x

@

@y
(c � f) = c

@f

@y



@

@x
(f � g) = @f

@x
g + f

@g

@x
(etc.)

@

@x
(f=g) = (

@f

@x
g � f

@g

@x
)/g2 (etc.)

@

@x
(h(f(x; y))) = h0(f(x; y))�@f

@x
(etc.)

In the end the way we should getused to taking a partial derivative is exactly the
same as for functions of one variable; just read from the outside in, applying each rule as
it is appropriate. The only di�erence now is that what tking a derivative of a function
z = f(x; y), we need to remember that

@

@x
(y) = 0 and

@

@y
(x) = 0

x3: Tangent planes
In one-variable calculus, we can convince ourselves that a function has a tangent line

at a point by zooming in on that point of the graph; the closer we look, the `straighter' the
graph appears to be. At extreme magni�cation, the graph looks just like a line - its tangent
line.

Functions of two variables are really no di�erent; as we zoom in, the graph of our
function f starts to look like a plane - the graph's tangent plane. Finding the equation of
this tangent plane is really a matter of determining its x- and y-slopes, which is precisely
what the partial derivatives of f do. The x-slope is the rate of change of the function in the
x-direction, i.e., the partial derivative with respect to x; and similarly for the y-slope.

So the equation for the tangent plane to the graph of z = f(x; y) at the point

(a; b; f(a; b)) is z =
@f

@x
(a; b)(x� a)+

@f

@y
(a; b)(y � b) + f(a; b)

And just as with one-variable calculus, one use we put this to is to �nd good approxi-
mations to f(x; y) at points near (a; b);

f(x; y) � @f

@x
(a; b)(x� a)+

@f

@y
(a; b)(y� b) + f(a; b), for (x; y) near (a; b)

As with one variable, this also goes hand-in-hand with the idea of di�erentials:
df = fx(a; b)dx + fy(a; b)dy = di�erential of f at (a; b)

And as before, f(x; y)� f(a; b) � df , when dx = x� a and dy = y � b are small.

x4: The gradient
@f

@x
and

@f

@y
measure the instantaneous rate of change of f in the x- and y-directions,

respectively. But what if we want to know the rate of change of f in the direction of the
vector 3~i�4~j ? By thinking of the partial derivatives in a slightly di�erent way, we can get
a clue to how to answer this question.

By writing fx(a; b) = lim
h!0

f((a; b) + h(1; 0))� f(a; b)

h

and fy(a; b) = lim
h!0

f((a; b) + h(0; 1))� f(a; b)

h
,

we can make the two derivatives look the same; which motivates us to de�ne the directional
derivative of f at (a; b), in the direction of the vector ~u, as

f~u(a; b) = D~u(a; b) = lim
h!0

f((a; b) + h~u)� f(a; b)

h
[Technically, we need ~u to be a unit vector, jj~ujj; for other vectors ~v, we would de�ne D~v(f)
= D~v=jj~vjj(f).]



But running to the limit de�nition all of the time would take up way too much of our
time; we need a better way to calculate directional derivatives! We can �gure out how to
do this using di�erentials:

For ~u = (u1; u2), f((a; b) + h~u � df = fx(a; b)hu1 + fy(a; b)hu2, so
f((a; b) + h~u)� f(a; b)

h
� fx(a; b)u1 + fy(a; b)u2

and so taking the limit, we �nd that f~u(a; b) = fx(a; b)u1 + fy(a; b)u2 = (fx(a; b); fy(a; b))�~u
.

The vector (fx(a; b); fy(a; b)) is going to come up often enough that we will give it its
own name;

(fx(a; b); fy(a; b)) = r(f)(a; b) = grad(f)(a; b) = the gradient of f
So the derivative f in the direction of ~u is the dot product of ~u with the gradient of f .

This means that (when � is the angle between rf and ~u), D~u(f) = jjDelf jj � jj~ujj � cos(�)
= jjrf jj cos(�) . This is the largest when cos(�) = 1, i.e., � = 0 i.e., ~u points in the same
direction as rf . So rf points in the direction of largest increase for the function f , at
every point (a; b) . Its length is this maximum rate of increase.

On the other hand, when ~u points in the same direction as the level curve for the point
(a; b) (i.e., it is tangent to the level curve), then the rate of change of f in that direction is
0; so rf � ~u = 0, i.e, rf ? ~u . This means that rf is perpendicular to the level curves of
f , at every point (a; b).

x3: Gradients for functions of 3 variables

For functions of 3 variables, everything works pretty much the same. We can make a
similar construction of the directional derivative of w = f(x; y; z); using the di�erential of
f ,

df = fx(a; b)dx + fy(a; b)dy + fz(a; b)dz
we can compute that D~u(f) = rf � ~u, where rf = (fx; fy; fz) is the gradient of f . For the
exact same reasons, this means that rf points in the direction of maximal increase for f ,
and rf is perpendicular to the level surfaces for f .

We can use the gradient of functions of 3 variables to help us understand the graphs
of functions of two variables, since we can think of the graph of a function of two variables,
z = f(x; y), as a level curve of a function of 3 variables

g(x; y; z) = f(x; y)� z = 0
The gradient of g is perpendicular to its level curves, so it is perpendicular to the graph of
f , so gives us the normal vector for the tangent plane to the graph of f . Computing, we
�nd that

rg = (
@f

@x
,
@f

@y
,�1) = ~n

which means that the equation for the tangent plane to the graph of z = f(x; y) at the point
(a; b; f(a; b)) is

(
@f

@x
(a; b),

@f

@y
(a; b),�1)�(x� a; y � b; z � f(a; b)) = 0


