
Math 208H

Topics for the second exam

(Technically, everything covered on the first exam, plus)

Constrained Optimization: Lagrange Multipliers
Most optimization problems that arise naturally are not unconstrained; we are usually
trying to maximize one function while satisfying another. We can use the one-variable
calculus trick of solving the constraint for one variable, and plugging this into the function
we wish to maximize, or we can take a completely different (and often better) approach:
The basic idea is that if we think of our constraint as describing a level curve (or surface)
of a function g, then we are trying to maximize or minimize f among all the points of the
level curve. If the level curves of f are cutting across our level curve of g, it’s easy to see
that we can increase or decrease f while still staying on the level curve of g. So at a max
or min, the level curve of f has to be tangent to our constraining level curve of g. This in
turn means:

At a max or min of f subject to the constraint g, ∇f = λ∇g (for some real number λ)
We must also satisfy the constraint : g(x, y) = c.

So to solve a constrained optimization problem (max/min of f subject to the constraint
g(x, y) = c) we solve

∇f = λ∇g and g(x, y) = c for x, y, and λ. All of the pairs (x, y) that
arise are candidates for the max/min; and the max and min must occur at some of these
points. [Technically, as before, we must also include points along g(x, y) = c where ∇f is
undefined; we won’t run into this possibility in practice, however.]

This also works for functions of more than two variables; the procedure is exactly the same.
In all of these cases, the real work is in solving the resulting equations! A basic technique
that often works is to solve each of the coordinate equations in ∇f = λ∇g for λ ; the other
halves of the equations are then all equal to one another (since they all equal λ).

This in turn allows us to finish our procedure for finding global extrema, since step (3) can
be interpreted as a constrained optimization problem (max or min on the boundary). In
these terms,

To optimize f subject to the condition g(x, y) ≤ c, we

(1) solve ∇f = 0 and g(x, y) < c,
(2) solve ∇f = λ∇g and g(x, y) = c,
(3) plug all of these points into f ,
(4) the biggest is the max, the smallest is the min.

[This works fine, unless the region g(x, y) ≤ c runs off to infinity; but often, physical
considerations will still tell us that one of our critical points is an optimum.]

The Definite Integral of a Function of Two Variables

In an entirely formal sense, the intergal of a function of one variable is a great big huge sum
of little tiny numbers; we add up things of the form f(ci)∆xi, where we cut the interval
[a, b] we are integrating over into little intervals of length ∆xi, and pick points ci in each
interval. In esssence, the integral is the sum of areas of very thin rectangles, which leads
us to iterpret the integral as the area under the graph of f .

For functions of two variables, we do the exact same thing. To integrate a function f over
a rectangle in the plane, we cut the rectangle into lots of tiny rectangles, with side lengths
∆xi and ∆yj , pick a point in each rectangle, and then add up f(xi, yj)∆xi∆yj . This
gives an approximation to the actual integral; letting the little side lengths go to zero, we
arrive at what we would call the integral of f over the rectangle R, which we denote by∫ ∫

R
f dA (where dA denotes the ‘differential of area’ dxdy (or dydx)
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The idea is that if we think of f as measuring height above the rectangle, then f(xi, yj)∆xi∆yj
is the volume of a thin rectangular box; letting the ∆’s go to zero, the integral would then
measure the volume under the graph of f , lying over the rectangle R.

If the region R isn’t a rectangle, we can still use this method of defining an integral; we
simply cover R with tiny rectangles, take the same sum, and let the ∆’s go to 0.

Of course, we have no reason to believe that as the ∆’s go to 0, this collection of sums will
converge to a single number. But it is a basic fact that if the function f is continuous, and
the region R isn’t too ugly, then these sums always will converge.

Iterated Integrals

Of course, the preceding approach is no way to compute a double integral! Instead, we (as
usual) steal an idea from one-variable calculus.

The idea is that we already know how to compute volumes, and so we implicitly know how
to compute double integrals! We can compute the volume of a region by integrating the
area of a slice. You can do this two ways; (thinking in terms of the region R in the plane)
you can slice R into horizontal lines, and integrate the area of the slices dy, or you can
slice R into vertical lines, and integrate the slices dx.

But each slice can be interpreted as an integral; the area of a horizontal slice is the integral
of f , thought of as just a function of x, and the area of a vertical slice is the integral of f ,
thought of as just a function of y. This leads to two ways to compute our integral:
∫ ∫

R
f dA =

∫ d

c
(
∫ b

a
f(x, y) dx) dy (for horiz slices) =

∫ b

a
(
∫ d

c
f(x, y) dy) dx (for vert slices)

In each case, the inner integral is thought of as the integral of a function of one variable.
It just happens to be a different variable in each case. In the case of a rectangle, the limits
of integration are just numbers, as we have written it. In the case of a more complicated
region R, the inner limits of integration might depend on where we cut. The idea is that a
slice along a horizontal line is a slice along y = constant, and the endpoints of the integral
might depend on y; for a slice along a vertical line (x = constant), the endpoints might
depend on x .

So, e.g., to integrate a function f over the region lying between the graphs of y = 4x and
y = x3, we would compute either∫ 2

0
(
∫ 4x

x3 f(x, y) dy) dx or
∫ 8

0
(
∫ y1/3

y/4
f(x, y) dx) dy

Which should we compute? Whichever one appears to require the least effort! They give
the same number!

Area and average value as integration

We can think of a double integral over a region R as the volume of the region lying under
the graph of f ; this helped us to formulate iterated integrals as an approach to their
computation. A different point of view comes when we think of the rectangles we cut R
into as having the same size; then a Riemann sum is (a constant times) the sum of values
of f at evenly distriibuted points around the region R. In symbols,∫ ∫

R

f dA ≈ ∆A
∑

f(Pi) = (n∆A)(
1

n

∑
f(Pi)) = (

∑
i

∆A)(
1

n

∑
f(Pi))

But
∑

i

∆A approximates
∫ ∫

R
1 dA, which we interpret as the volume of a cylinder with

base R and height 1, which has volume (Area of R)(1) = Area of R. And (
1

n

∑
f(Pi))
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can be thought of as an approximation for the average value of the function f , since the n
points Pi are evenly distributed around R. Putting this all together, we end up with∫ ∫

R

f dA = (Average value of f)(Area of R).

In this sense, the average value of f over R is the height of cylinder over the base R which
will have the same volume as the region lying under the graph of f .

We can use this either as a definition of the average value of f (and then use the integrals

to compute it!) or as a method for approximating

∫ ∫
R

f dA, by picking a large number

of points in R at random and computing the average value of f at those points (as a way
of approximating this ‘ideal’ notion of the average value of f) and then multiplying by the
area of R. This second interpretation is probably the one that sees actual use more often;
as we have seen in one variable calculus, there are a lot of integrals that resist our abilities
to compute the ‘old-fashioned’ way (by the fundamental theorem of calculus), and multiple
integrals are no different! But applications in physics, economics, biology, engineering, and
a whole host of other disciplines still need to know the value of those integrals!

Change of variables

Polar coordinates illustrate the benefit of decribing points in the plane differently - it
can simplify the description of some regions in the plane. This, in turn, can aid us in
the computation of some double integrals. The idea is to change variables; it’s basically
u-substitution for function of two variables.

The general idea is that if a region R can be described more conveniently using a different
sort of coordinates, this means that we are describing x and y as functions of different
variables s and t. For example, a circle of radius 4 is better described as

x = r cos θ and y = r sin θ, for 0 ≤ r ≤ 4 and 0 ≤ θ ≤ 2π

(i.e., polar coordinates). In general, changing coordinates means describing the region R
by

x = x(s, t) and y = y(s, t), for s and t in some region S

Then we write the integral of the function f over R as the integral of something else
(written in terms of s and t) over the region S. The question is, the integral of what? The
answer comes from thinking of cutting up S into little rectangles Sij , and looking at the
little regions Rij the change of variables carries each to. The integral of f over R can be
approximated by adding up values in each region Rij , times the area of Rij. By choosing
(si, tj) in Sij , we can use the point (x(si, tj), y(si, tj)) in Rij; the question is, what is the
area of Rij?.

If we think of the rectangles Sij as having sides of length ds and dt, then using linear
approximations to x(s, t) and y(s, t), Rij can be approximated by a parallelogram with
sides the vectors

(
∂x

∂s
,
∂y

∂s
)ds and (

∂x

∂t
,
∂y

∂t
)dt

Luckily, we know how to compute the area of such a parallelogram; it’s given by the length
of the cross product of the two sides (add 0’s to the vectors, so they are in 3-space!), which
turns out to be:

∆Aij = |xsyt − xtys| ds dt

Taking limits as the size of the Sij goes to zero, we obtain:∫ ∫
R

f(x, y) dx dy =
∫ ∫

S
f(x(s, t), y(s, t)) |xsyt − xtys| ds dt
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The expression |xsyt − xtys| is called the Jacobian associated to the change of variables,
and is sometimes written

|xsyt − xtys| =
∂(x, y)

∂(s, t)

For example, to integrate a function f over the triangle with vertices (1,1), (2,3), and (3,8),
we can instead integrate over the triangle with vertices (0,0), (1,0), and (0,1), by changing
coordinates. It turns out we can always do this by writing

x = as + bt + c and y = ds + et + f

for appropriate choices of a, b, c, d, e and f . All you need to do is solve the equations
1 = a0 + b0 + c, 1 = d0 + e0 + f, 2 = a1 + b0 + c, 3 = d1 + e0 + f, 3 = a0 + b1 + c, and
8 = d0 + e1 + f which, in this case, gives a=1,b=2,c=1,d=2,e=7,f=1. So x = s + 2t + 1
and y = 2s + 7t + 1, giving Jacobian 1 · 7− 2 · 2 = 3. So under this change of coordinates,∫ ∫

R
f(x, y) dA =

∫ 1

0

∫ 1−t

0
f(s + 2t + 1, 2s + 7t + 1) · 3 ds dt

Double integrals with polar coordinates

Polar coordinates describe a point in the plane by distance and direction, r and θ. We can
translate from rectangular to polar coordinates by

(x, y) = (r cos θ, r sin θ)

We can use this new coordinate system to simplify some integration problems, in part
because a circular disk is a polar rectangle, defined by 0 ≤ r ≤ R0 and 0 ≤ θ ≤ 2π.
Similarly, circular sectors can be described as ‘polar rectangles’.

But in so doing, we must interpret dA in terms of dr and dθ ; this is completely analogous
to what we must do with u-substitution. If we have a small circular sector, made between
the circles of radius r and r + ∆r, and between the lines making angles θ and θ + ∆θ, it
has area approximately r∆r∆θ; so

dA = r dr dθ

and so
∫ ∫

R
f(x, y) dA =

∫ ∫
D

f(r cos θ, r sin θ) r dr dθ , where D is how we describe the
region R in polar coordinates.

For example, the integral of the function f(x, y) = xy on the semicircle lying between the

x-axis and y=
√

9 − x2 can be computed as∫ π

0

∫ 3

0

(r cos θ)(r sin θ)r dr dθ

Triple Integrals

Triple integrals are just like double integrals, only more so. We can define them as a limit
of a huge sum; here the terms in the sum would be the value of the function f time the
volume of a tiny rectangular box. The usual interpretation of a triple integral arises by
thinking of the function f as giving the density of the matter at each point of a solid region
W in 3-space. Since density times volume is mass, the integral of f over the region W
would compute the mass of the solid object occupying the region W . In the special case
that f is the function 1, the integral will compute the volume of the region W .

Again, as with double integrals, the way we really comupute a triple integral is as a (triply)
iterated integral. You pick a direction to slice (x=constant, y=constant, or z=constant)
W up, and compute the integral of f over each slice. Each of these is a double integral
(computed as an iterated integral), whose value depends on the variable you sliced along.
To compute the integral over W , you integrate these double integrals over the last variable,
getting three iterated integrals.
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Put slightly differently, you can evaluate a triple integral by integrating out each variable,
one at a time. Typically, we start with z, since our region W is usually described as
the region lying between the graphs of two functions, given as z=blah and z=bleh . The
idea is to first, for each fixed value of x and y, integrate the function f , dz, from blah to
bleh. (Ther resulting values depend on x and y, i.e., are a function of x and y.) Then
we integrate over the region, R, in the plane consisting of the points (x, y) such that the
vertical line hits the region W . We usually call this region R the shadow of W in the x-y
plane. In symbols∫ ∫ ∫

W
f dV =

∫ ∫
R
(
∫ e(x,y)

a(x,y)
f(x, y, z) dz) dA

For example, the integral of a function over the region lying above the x-y plane and inside
the sphere of radius 2, centered at the origin, would be computed as
∫ ∫

R
(
∫√4−x2

−y2

0
f(x, y, z) dz) dA =

∫ 2

−2
(
∫ √

4−x2

−

√

4−x2(
∫√4−x2

−y2

0
f(x, y, z) dz) dy) dx

where R is the shadow of W (in this case, the disk of radius 2, centered at the origin, in
the x-y plane).

Change of variables for Triple Integrals

As with double integrals, we can carry out a change of coordinates for 3 variables; we then
write

x = x(s, t, u), y = y(s, t, u), and z = z(s, t, u)

A little box with sides of length ds, dt, and du gets carried to a little parallelopiped, with
sides the vectors

(xs, ys, zs) ds, (xt, yt, zt) dt, and (xu, yu, zu) du

(call these Vs, Vt, and Vu). This has volume |Vs • (Vt × Vu)|, which is the Jacobian of this
change of variables, and serves as the necessary “fudge factor” to express an integral in
terms of s, t, and u.
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