
Math 208H

Topics since the third exam

(Parametrized) surfaces and surface area

Just as curves can be represented as the image of a function from an interval into 3-space, a
surface Σ in space can be parametrized as a function (of two variables), or really three functions
(x, y, and z) from a region R in the u, v-plane;

T (u, v) = (x(u, v), y(u, v), z(u, v)) .

For example, the graph of a function f : R → R can be parametrized by x = u, y = v, z = f(u, v)
for (u, v) in R. For such a surface Σ we can formulate an integral which will compute its surface
area; as usual, we start by approximating the surface by things whose area we can compute, in
this case, by parallelograms. We worked out the basic technology when we developed change of
variables formulas; at any point P of Σ, P = T (u0, v0), a small rectangle in u, v-space is sent by
T to something approximated by the parallelogram spanned by the vectors Tu = (xu, yu, zu) and
Tv = (xv, yv, zv) with tails at P . The area of Σ can therefore be approximated by a sum looking
like

∑
||Tu × Tv||∆u∆v, since these are the areas of the parallelograms. But this in turn is an

approximation of an integral over the region R in u.v-space! SO we define

Area of Σ -

∫ ∫
R

||Tu × Tv|| du dv

As an example, using sphereical coordinates to parametrixze a sphere (just set the radius to be
a constant), we find that the area of a sphere of radius r is 4πr2.

Because we could interpret the above integral as the area of Σ, we obtain the important obser-
vation that this integral does not ‘really’ depend on the parametrization, but only on the surface
being parametrized.

Flux Integrals

More generally, we can integrate a function f , whose domain contains the surface σ, over σ. The
basic idea is that surface area is essentially the integral of the function 1 over Σ, and so the
proper formulation of the integral of f should be∫ ∫

Σ

f dA =

∫ ∫
R

f(x(u, v), y(u, v), z(u, v)) ||Tu × Tv|| du dv

Again, we can see that this is independent of the parametrization of Σ, since it can be thought
of as approximated by (Riemann) sums of the value of f times the area of small pieces of Σ,
representing an ‘average’ value of f over the surface.

Perhaps more importantly (the concept, at least, appears throughout the sciences), we can in-
tegrate vector fields (in 3-space) over a surface Σ. The interpretation we will use is that we are
measuring the amount of fluid flowing through a surface (e.g., a cell membrane) immersed in the
fluid.

We can think of a wire-frame surface sitting in a river; we would like to compute the amount of
water flowing (each second, perhaps) through the surface. (Or, you can think of computing the
amount of rain falling on the surface of your body...)

Our input is a (velocity) vector field F , and a surface S, described in some fashion, typically as
a parametrized surface. The idea is that a piece of surface which is tilted with respect to the
vector field will not contribute much to the total. In other words, the amount flowing through
the surface is related to the extent to which the (unit) normal vector for the surface is pointing
in the same direction as F . We measure this with the dot product, F • ~n. This amount is also
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proportional to the size of the surface; twice as much surface will give twice as much flow. This
leads us to believe that what we need to add up in order to compute the flow through the surface
is F • ~n dA (to take into account tilt and size). So we define the flux integral of a vector field F
over a surface S to be ∫

S
~F • d ~A =

∫
S
( ~F • ~n) dA

Now at every point of the surface S, we actually have two choices of unit normal vector ~n; we will
often choose the outward pointing normal, pointing away from the region that our surface sur-
rounds. Other times, we choose the upward pointing normal, the one with positive z-coordinate.
For example, if S is a sphere of radius R, centered at (0,0,0), the outward unit normal at (x, y, z)
is just (x/R, y/R, z/R). If we choose F to be this same vector, then F • ~n = 1, and so our flux
integral will just compute the area of the surface S.

Computing using a parametrization of a surface

For computations, what we need is some approaches to calculating ~n dA . The most general
approach to this is to use a parametrization of the surface S, as we did for surface area. The
unit normal is given by

Tu × Tv

||Tu × Tv||
and dA is ||Tu × Tv|| du dv. So ~n dA = Tu × Tv du dv, and so

∫ ∫
S
( ~F • ~n) dA =

∫ ∫
R
~F • (Tu × Tv) du dv

In particular, there are three parametrizations we know, coming from our standard coordinate
systems:

Suppose S is the graph of a function f , having domain R in the plane. What we would really
like to do is to compute the flux integral as the integral of a function over R. To do this, we note
that the vector v = (−fx,−fy, 1) is normal to the graph of f ; it’s the normal vector we used to
express the tangent plane to the graph of f . It just so happens that v = (1, 0, fx) × (0, 1, fy),
and so its length is equal to the area of the parallelogram that these two vectors span. But!,
these are exactly the paralleograms we would use to approximate the graph, i.e., this length is
also dA. So, ~n dA = (−fx,−fy, 1), and so∫

S
F • ~n dA =

∫
R
F (x, y, f(x, y)) • (−fx,−fy, 1) dx dy dz

We can also use cylindrical and spherical coordinates, in special cases. If S is a piece of a cylinder,
given by r = r0, for θ and z in some range of values R, then the outward normal at r0, θ, z is
(cos θ, sin θ, 0), while dA = r0 dθ dz, so∫

S
F • ~n dA =

∫
R
F (r0 cos θ, r0 sin θ, z) • (cos θ, sin θ, 0)r0 dθ dz

If S is a piece of sphere, given by ρ = ρ0 for θ and φ in some range R of values, then the outward
normal is (cos θ sinφ, sin θ sinφ, cosφ) while dA is ρ2

0
sinφ dθ dφ, so∫

S
F • ~n dA =∫

R
F (ρ0 cos θ sinφ, ρ0 sin θ sinφ, ρ0 cosφ) • (cos θ sinφ, sin θ sinφ, cosφ) ρ

2
0
sinφ dθ dφ

The divergence of a vector field

In terms of the coordinates ~F = (F1, F2, F3) of a vector field, the divergence is

div(F ) = (F1)x + (F2)y + (F3)z

It can be identified with the flux density of the vector field ~F at a point P : this should be though
of as the flux integral of F through a tiny box around the point P . This measures the extent to
which the vector field is ‘expanding’, at each point.
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A vector field F is divergence-free if div(F ) = 0. For example, F = (y, z, x) is divergence free,
but F = (x, y, z) is not; div(F ) = 3.

Some formulas that can help to calculate divergence:

div(fF ) = (∇f) • F + f · (divF )
div(F ×G) = (curl F ) •G − F • (curlG) in 3-space

div(curl( ~F )) = 0 in 3-space

It turns out that this last result works the other way; a vector field F , defined over an entire
box, which is divergence-free, is the curl of some other vector field G. Computing the vector
field G can take some work, though; the general technique can be found listed under ‘Helmholtz
decomposition’, if you’re interested...

The Divergence Theorem

If W is a region in 3-space, its boundary is a surface S. (S might actually consist of several
pieces; this won’t really effect our discussion.) We can choose normal vectors for each piece of S
by insisting that ~n alway points out of W . Then we have, for any vector field F which is defined

everywhere in W :

The Divergence Theorem:

∫
S

~F • d ~A =

∫
W

(div F ) dV

In other words, we can compute flux integrals over a surface S that forms the boundary of a
regionW , by computing the integral of a different function over W . This is especially useful when
the vector field is divergence-free; for example if the region W has two surfaces for boundary and
F is divergence-free, then the flux integral of F over one surface, with normals pointing out of
W , is equal to the flux integral of F over the other surface, with normals pointing into W . Even
if F is not divergence-free, we can compute the flux integral of one as the flux integral of the
other plus the triple integral of the divergence over W .

The curl of a vector field

We have already met the curl of a vector field ~F = (F1, F2) in 2-space; there is a similar definition

for a vector field ~F = (F1, F2, F3) in 3-space, except that it is a vector. In terms of coordinates:

curl( ~F ) = ((F3)y − (F2)z,−((F3)x − (F1)z), (F2)x − (F1)y)

Its physical interpretation is as the direction where the circulation density of the vector field
~F , at the point P , is the largest. The circulation density measures the extent to which objects
caught up in a (velocity) vector field ‘want’ to rotate with their axis pointing in the direction of
a (unit) vector ~n, and is computed as the limit, as the side lengths go to 0, of the line integral of
~F around the boundary of a little square around P and perpendicular to ~n, divided by the area
of the square. In terms of the curl, it can be computed as

circ~n( ~F ) = curl( ~F ) • ~n

We have already used the curl to detect conservative vector fields; this stems from the formula

curl(∇ ~F ) = (0,0,0)

A vector field ~F is curl-free if curl ~F = (0,0,0) . This means that in any box in which ~F is defined,
~F is a gradient vector field (although it is possible that ~F cannot be expressed as the gradient

of a function everywhere that ~F is defined at the same time; the standard example of this is the
vector field

~F = (
−y

x2 + y2
,

x

x2 + y2
, 0)
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~F is curl-free, but it is not a gradient vector field, since (as you can check) the line integral of ~F
around the circle of radius one in the x-y plane with center (0,0,0) is 2π. Green’s Theorem does

not work, because ~F (and so its curl) is not defined at the center of the disk with boundary the
circle.)

Stokes’ Theorem

If S is a surface in 3-space, with a normal orientation ~n, the boundary of S is a colection
of paramatrized curves (there can easily be more than one, e.g, if S is a cylinder). We can
orient each curve using a right-hand rule; if we stand on the curve and walk along it the chosen
orientation with our heads pointing in the direction of ~N , then the surface S dshould always be
on our left. Then Stokes’ Theorem says that, for any vector field ~F defined everywhere on S:∫

C

~F • d~r =
∫
S
(curl ~F ) • d ~A

This allows us to compute line integrals as flux integrals, and, with a little work, flux integrals
as line integrals.

For example, it says that the line integral of a curl-free vector field ~F around a closed curve is
always 0, so long as the curve is the boundary of a surface contained entirely in the domain of
~F .

We say that a vector field ~F is a curl field if ~F = curl( ~G) for some vector field ~G . ~G is called

a vector potential of ~F . Then Stokes’ Theorem says that, for any surface S in the domain of ~F
with boundary C, ∫

S

~F • d ~A =

∫
S

curl ~G • d ~A =

∫
C

~G • d~r

So, for example, for a curl field ~F and two surfaces S1 and S2 with the same boundary C, we
have ∫

S1

~F • d ~A =

∫
S2

~F • d ~A

So the flux integral of a curl field really depends just on the boundary of the surface, not on the
surface.

We can test for whether or not ~F is a curl field, using the divergence, since div(curl( ~G)) = 0, so
a curl field must be divergence-free. (The opposite, as we have seen, is almost true; it is true, for
example, if the vector field is defined in a big box.)

The whole idea behind these three theorems (Green’s, Divergence, and Stokes’) is that the integral
of one kind of function over one kind of region can be computed instead as the integral of another
kind of function over the boundary of the region.

Green’s: Integral of the vector field ~F over a closed curve in the plane equals integral of its curl
of ~F over the region in the plane that the curve bounds.

Divergence: The flux integral of a vector field ~F through the boundary of a region in 3-space
equals the integral of the divergence of ~F over the region in 3-space.

Stokes’: The line integral of the vector field ~F over a closed curve C in 3-space equals the flux
integral of the curl of ~F over any surface S that has C as its boundary.

Note that Green’s Theorem is really just a special case of Stokes’ (where the curve C lies in the

plane, and the third coordinate of ~F just happens to be 0). All of these, like the Fundamental
Theorem of Line Integrals, are really a kind of Fundamental Theorem of Calculus, where we are
computing a kind of integral by instead computing something else across the boundary of the
region we are interested in.
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