

Math 208H, Section 1

Exam 1 Solutions

1. (15 pts.) For which value(s) of c are the vectors $\vec{v} = (1, 2, c)$ and $\vec{w} = (-5, 2c, 4)$ orthogonal?

We want $\vec{v} \bullet \vec{w} = 0$, so $0 = (1, 2, c) \bullet (-5, 2c, 4) = -5 + 4c + 4c = -5 + 8c$, so $8c = 5$ and so $c = 5/8$. This gives the vectors

$$\vec{v} = (1, 2, \frac{5}{8}) \text{ and } \vec{w} = (-5, \frac{5}{4}, 4) .$$

[As a check, $\vec{v} \bullet \vec{w} = (1, 2, \frac{5}{8}) \bullet (-5, \frac{5}{4}, 4) = -5 + \frac{5}{2} + \frac{5}{2} = 0$, as desired.]

2. (20 pts.) Find the equation of the plane passing through the points

$$(2, 3, 5) , (1, -1, 0) , \text{ and } (1, 1, 2) .$$

Labeling the points P, Q , and R for convenience, we have $\vec{v} = \vec{PQ} = (-1, -4, -5)$ and $\vec{w} = \vec{PR} = (-1, -2, -3)$. These are directions in the plane, and so their cross product will be normal to the plane. So we compute

$$\begin{aligned} \vec{n} = \vec{v} \times \vec{w} &= \left(\begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix}, - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix}, \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} \right) = \left(\begin{vmatrix} -4 & -5 \\ -2 & -3 \end{vmatrix}, - \begin{vmatrix} -1 & -5 \\ -1 & -3 \end{vmatrix}, \begin{vmatrix} -1 & -4 \\ -1 & -2 \end{vmatrix} \right) \\ &= (12 - 10, -(3 - 5), 2 - 4) = (2, 2, -2). \end{aligned}$$

[As a check, we can compute $\vec{v} \bullet \vec{n} = -2 - 8 + 10 = 0$ and $\vec{w} \bullet \vec{n} = -2 - 4 + 6 = 0$.]

With a normal $\vec{n} = (2, 2, -2)$ to the plane and a point $P = (2, 3, 5)$ on the plane, we can give the equation for the plane as $\vec{n} \bullet [(x, y, z) - (2, 3, 5)] = 0$, i.e.,

$$2(x - 2) + 2(y - 3) - 2(z - 5) = 0 .$$

[There are, of course, many other equivalent answers, obtained by choosing, for example, another point to use as the tails of our vectors....]

3. (15 pts.) What is the rate of change of the function $f(x, y) = \frac{xy}{x + 2y}$, at the point $(4, 2)$, and in the direction of the vector $\vec{v} = (1, 1)$?

The rate of change is the directional derivative, computed as $\nabla f(4, 2) \bullet \vec{v}$. So we compute:

$$\begin{aligned} f(x, y) &= xy(x + 2y)^{-1}, \text{ so } f_x = (y)(x + 2y)^{-1} + (xy)[(-1)(x + 2y)^{-2}(1)], \text{ and} \\ f_y &= (x)(x + 2y)^{-1} + (xy)[(-1)(x + 2y)^{-2}(2)]. \text{ So} \end{aligned}$$

$$\nabla f(4, 2) = ((2)(8)^{-1} + (8)(-1)(8)^{-2}, (4)(8)^{-1} + (8)(-1)(8)^{-2}(2)) = (\frac{1}{4} - \frac{1}{8}, \frac{1}{2} - \frac{1}{4}) = (\frac{1}{8}, \frac{1}{4})$$

$$\text{So the rate of change is } \nabla f(4, 2) \bullet \vec{v} = (\frac{1}{8}, \frac{1}{4}) \bullet (1, 1) = \frac{1}{8} - \frac{1}{4} = \frac{1}{8}.$$

[Under some interpretations, we should divide this number by $\|(1, 1)\| = \sqrt{2}$, in order to be using the unit vector pointing in the direction of \vec{v} .]

4. (15 pts.) Find the equation of the plane tangent to the graph of the function

$$g(x, y) = x^3y - 4x^2y^2 + 2xy^4 \quad \text{at the point } (2, 1, g(2, 1)).$$

We can describe this plane using a point on the plane and its x - and y -slopes, all of which the function can provide.

The point of tangency $(2, 1, g(2, 1)) = (2, 1, 8 - 16 + 4) = (2, 1, -4)$ is a point on the plane. For the slopes, we compute:

$$g_x = 3x^2y - 8xy^2 + 2y^4, \text{ so } f_x(2, 1) = 12 - 16 + 2 = -2 = m = x\text{-slope.}$$

$$g_y = x^3 - 8x^2y + 8xy^3, \text{ so } f_y(2, 1) = 8 - 32 + 16 = -8 = n = y\text{-slope.}$$

So the equation for the tangent plane is given by

$$z = g(2, 1) + g_x(2, 1)(x - 2) + g_y(2, 1)(y - 1) = -4 - 2(x - 2) - 8(y - 1)$$

Multiplying out, this can be converted to $z = -4 - 2x + 4 - 8y + 8 = -2x - 8y + 8$.

5. (15 pts.) If $x = u^2v$ and $y = uv^2$, then show how to express the partial derivatives of

$$g(u, v) = f(x(u, v), y(u, v)) \quad \text{at the point } (u, v) = (2, -1), \text{ in terms of the}$$

$$(\text{at the moment unknown}) \text{ partial derivatives } \frac{\partial f}{\partial x} \text{ and } \frac{\partial f}{\partial y} .$$

Writing $z = g(u, v) = f(x(u, v), y(u, v))$, by the Chain rule, we know that $z_u = z_x x_u + z_y y_u$ and $z_v = z_x x_v + z_y y_v$. We can compute

$$x(2, -1) = 2^2(-1) = -4 \text{ and } y(2, -1) = 2(-1)^2 = 2, \text{ so } (x, y) = (-4, 2), \text{ while}$$

$$x_u = 2uv, x_v = u^2, y_u = v^2, \text{ and } y_v = 2uv, \text{ and so at } (u, v) = (2, -1), \text{ we have}$$

$$x_u = -4, x_v = 4, y_u = 1, \text{ and } y_v = -4. \text{ So at } (u, v) = (2, -1), \text{ we have}$$

$$g_u(2, -1) = [f_x(-4, 2)][-4] + [f_y(-4, 2)][1] = -4f_x(-4, 2) + f_y(-4, 2), \text{ and}$$

$$g_v(2, -1) = [f_x(-4, 2)][4] + [f_y(-4, 2)][-4] = 4f_x(-4, 2) - 4f_y(-4, 2) .$$

6. (20 pts.) Find the **second** partial derivatives of the function $h(x, y) = xe^{xy}$.

We compute:

$$h_x = (1)(e^{xy}) + (x)(e^{xy}y) = e^{xy} + xye^{xy} \text{ and } h_y = (0)(e^{xy}) + (x)(e^{xy}x) = x^2e^{xy} . \text{ So}$$

$$h_{xx} = (h_x)_x = (e^{xy})(y) + [(y)e^{xy} + (xy)(e^{xy}y)] = 2ye^{xy} + xy^2e^{xy} ,$$

$$h_{xy} = (h_x)_y = (e^{xy})(x) + [(x)(e^{xy}) + (xy)(e^{xy}x)] = 2xe^{xy} + x^2ye^{xy} ,$$

$$h_{yx} = (h_y)_x = (2x)(e^{xy}) + (x^2)(e^{xy}y) = 2xe^{xy} + x^2ye^{xy} = h_{xy} , \text{ and}$$

$$h_{yy} = (x^2)(e^{xy}x) = x^3e^{xy} .$$