
Math 208H, Section 1

Practice problems for Exam 1 (Solutions)

[Disclaimer: these solutions were written somewhat hastily and without much verifi-
cation, so while the method described is almost certainly correct, the actual computations
do not carry the same claims of correctness....]

9. Find the local extrema of the function f(x, y) = 2x4 − 2xy + y2 , and determine, for
each, if it is a local max. local min, or saddle point.

Local extrema occur at critical points, so we compute: fx = 8x3−2y and fy = −2x+2y
. These are never undefined, so our only critical points will occur when both are 0.
fy = −2x + 2y = 0 means 2y = 2x, so y = x. Substituting this into fx = 8x3 − 2y = 0
gives 8x3 − 2x = (2x)(4x2 − 1) = 0, so either x = 0, or 4x2 − 1 = 0, so x = 0 or x = 1/2
or x = −1/2. This yields the three critical points (0, 0) , (1/2, 1/2) , and (−1/2,−1/2).

To determine their character, we need the Hessian: fxx = 24x2, fxy = −2, and
fyy = 2, so H = fxxfyy − (fxy)

2 = 48x2 − 4. At (0, 0) H = −4 < 0, so (0, 0) is a saddle
point. At (1/2, 1/2), H = 48/4 − 4 = 12 − 4 = 8 > 0 and fxx = 24/4 = 6 > 0, so
(1/2, 1/2) is a local min. And at (−1/2,−1/2), H = 48/4 − 4 = 12 − 4 = 8 > 0 and
fxx = 24/4 = 6 > 0 as well, so (−1/2,−1/2) is also a local min.

6. Find the point(s) on the ellipse g(x, y) = x2 + 3y2 = 4

where the function f(x, y) = x− 3y + 4 achieves it maximum value.

We use Lagrange multipliers, which requires us to solve

1 = λ(2x) , −3 = λ(6y), and x2 + 3y2 = 4

The first two equations tell us that λ cannot be 0, and so we can solve them for x and
y and plug into the third equation, which yields (after clearing denomenators) 4 · 4λ2 = 4,
so λ = ±1/2. Using these values in our first two equations yields (x, y) = (1,−1) or (−1, 1).
Plugging into f , we find that the maximum occurs at (1,−1).

1. Evaluate the iterated integral

∫ 2

0

∫ 2

x

x2(y4 + 1)1/3 dy dx

by rewriting the integral to reverse the order of integration. (Note: the integral cannot be
evaluated in the order given....)

The region x ≤ y ≤ 2, for 0 ≤ x ≤ 2, is a triangle formed by the lines y = x, y = 2,
and x = 0. Writing this as a collection of horizontal lines gives the alternate decription

0 ≤ x ≤ y for 0 ≤ y ≤ 2. This yields the alternate iterated integral

∫ 2

0

∫ y

0

x2(y4 + 1)1/3

dx dy =

∫ 2

0

y3

3
(y4 + 1)1/3 dy =

3

4

1

12
(y4 + 1)4/3

∣

∣

∣

2

0
=

1

16
[(24 + 1)4/3 − 1] .

4. Find the integral of the function f(x, y, z) = x+ y + z

over the region lying between the graph of z = x2 + y2 − 4 and the x-y plane.

The graph of z is a paraboloid, lowered by 4 units, and so the region betweeen lies
above the paraboloid and below the plane. The vertical lines which hit the region are
those with x2 + y2 ≤ 4, which described the inside of the circle of radius 2 centered at the



origin. So this integral is perhaps best set up using cylindrical coordinates: The shadow
R is given by 0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π in polar coordinates. So the integral is:

∫

R

∫ 0

x2+y2
−4

x+ y + z dz dA =

∫ 2π

0

∫ 2

0

∫ 0

r2−4

r cos θ + r sin θ + z r dz dr dθ .

We omit the iterated integral calculation; you should carry it through!

3. Find the integral of the function f(x, y) = xy2 over the region lying in the
first quadrant of the x-y plane and lying inside of the circle x2 + y2 = 9 .

The region R is ‘best’ described in polar coordinates, as 0 ≤ r ≤ 3 and 0 ≤ θ ≤ 2π.
The Jacobian for this change of variables is r, and f(x, y) = xy2 = r3 cos θ sin2 θ, yielding

the integral

∫ 2π

0

∫ 3

0

r4 cos θ sin2 θ dr dθ =

∫ 2π

0

32

5
cos θ sin2 θ dθ =

32

5

sin3 θ

3

∣

∣

∣

2π

0
= 0−0 = 0

5. Find the integral of the function f(x, y) = 6x+ y2 over the region in the x-y
plane between the x-axis and the lines y = x and y = 6− 2x .

We can set this up several ways. The region is a triangle resting on the x-axis.
Integrating dy first would require us to dut it into two pieces, so let’s try the other way.
The region is y ≤ x ≤ (6−y)/2 for 0 ≤ y ≤ the point where the two lines meet; x = 6−2x
when x = 2, so 0 ≤ y ≤ 2. The integral then becomes

∫ 2

0

∫ (6−y)/2

y

6x+y2 dx dy =

∫ 2

0

3x2+y2x
∣

∣

∣

(6−y)/2

y
dy =

∫ 2

0

3over4(6−y)2+
1

2
y2(6−

y)− 3y2 − y3 dy, which finishes as a slightly ugly but otherwise routine integral.

4. Find the integral of the function f(x, y) = xy2 over the region in the plane
lying between the graphs of a(x) = 2x and b(x) = 3− x2 .

Our first task is to describe the region. To do this we need to know where the graphs
meet, so we solve 2x = 3− x2, so 0 = x2 + 2x− 3 = (x+ 3)(x− 1), so x = −3, 1. Between
these two points we have (x+3)(x−1) < 0, so 2x < 3−x2. So the region is 2x ≤ y ≤ 3−x2,
for −3 ≤ x ≤ 1. So our integral is

∫ 1

−3

∫ 3−x2

2x

xy2 dy dx. This equals

∫ 1

−3

xy3

3

∣

∣

∣

3−x2

2x
dx =

1

3

∫ 1

−3

x(3 − x2)3 − 8x4 dx .

Noting that the first piece of the integrand is nicely arranged for a u-substitution (u =
3− x2) can make the rest of the computation a bit more pleasant...

5. Evaluate the following double integrals:

(a):

∫ 1

0

∫ 2

1

x2y − y2x dx dy

Having no particular reason to switch the order of integration, we find that the integral

equals

∫ 1

0

1

3
x3y−

1

2
y2x2

∣

∣

∣

x=2

x=1
dy =

∫ 1

0

(
1

3
8y−

1

2
4y2)− (

1

3
y−

1

2
y2) dy =

∫ 1

0

7

3
y−

3

2
y2 dy =

7

6
y3 −

1

2
y3
∣

∣

∣

1

0
=

7

6
−

1

2
=

7− 3

6
=

2

3
[although don’t count on that...]

(b):

∫ 1

0

∫ 1

√

x

x
√
y dy dx



We can go at this straight ahead, as written, or, for fun, switch the order of integration,
since y =

√
x and y = 1 meet at x = 1, which is the other limit of integration. Drawing a

figure, we find that the region has the alternate description 0 ≤ x ≤ y2 for 0 ≤ y ≤ 1, so
the integral equals

∫ 1

0

∫ y2

0

x
√
y dx dy =

∫ 1

0

x2√y

2

x=y2

x=0
dy =

∫ 1

0

1

2
x9/2 =

2

11

1

2
x11/2

∣

∣

∣

1

0
=

1

11
− 0 =

1

11
.

1. Find the integral of the function f(x, y) = x over the region R lying between the graphs
of the curves

y = x− x2 and y = x− 1.

This is much like a previous problem; The two graphs meet when x− x2 = x− 1, so
x = −1, 1 and between these numbers x− 1 ≤ x− x2, so our region is x− 1 ≤ y ≤ x− x2

for −1 ≤ x ≤ 1. So our integral is
∫ 1

−1

∫ x−x2

x−1

x dy dx =

∫ 1

−1

xy
∣

∣

∣

y=x−x2

y=x−1
dx =

∫ 1

−1

(x2−x3)−(x2−x) dx =

∫ 1

−1

x−x3 dx =

x2/2− x4/4
∣

∣

∣

1

−1
= (1/2− 1/4)− (1/2− 1/4) = 0 . [Hm, that seems to happen a lot...]

5. Use Lagrange multipliers to find the maximum value of the function f(x, y) = xy
subject to the constraint g(x, y) = x2 + 4y2 − 1 = 0 .

Setting the gradients equal (with multiplier λ), we wish to solve y = λ(2x) , x = λ(8y)
, and x2 +4y2 = 1 . This means y = 2λx = 2λ(8λy) = 16λ2y, so either y = 0 or 16λ2 = 1,
so λ = ±1/4. But if y = 0 then x = 8λy = 0, which will not satisfy x2 + 4y2 = 1, so that
won’t work.

So λ = ±1/4, giving us x = ±2y, so (±2y)2 + 4y2 = 8y2 = 1, so y = ±
√
2/4. This

gives us four points:

(x, y) = (−
√
2/2,−

√
2/4), (−

√
2/2,

√
2/4)4, (

√
2/2,−

√
2/4)4, or (

√
2/2,

√
2/4)4.

Plugging into f gives two values; the larger is 1/4 [and the smaller is −1/4].

7. Find the area of the region S bounded by one loop of the curve described by
r = sin(3θ)

in polar coordinates. (Hint; to determine the limits of integration, when is r = 0?)

The first return to r = 0 after θ = 0 is when 3θ = π, so θ = π/3. This gives us the in-

tegral

∫ ∫

S

dx dy =

∫ π/3

0

∫ sin(3θ)

0

r dr dθ =
1

2

∫ π/3

0

r2
∣

∣

∣

sin(3θ)

0
dθ =

1

2

∫ π/3

0

sin2(3θ) dθ =

1

4

∫ π/3

0

(1− cos(6θ) dθ =
1

4
(θ −

1

6
sin(6θ))

∣

∣

∣

π/3

0
=

π

12

Particle problem: solution omitted.


