
(Implicit) differentiation at a saddle point:
an application of L H̀ôpital’s rule

We learned, for a function y = y(x) defined implicitly by a function of two variables
f(x, y) = c, that what we learn as implicit differentiation in Calculus I is in essence the
multivariate Chain Rule. That is, if f(x, y) = c and x = x(t) = t and y = y(t), then as a
function of t, z = f(x(t), y(t)) = f(t, y(t)) = c is constant, so
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But what happens if fx = fy = 0 ? This must happen, for example, where a level curve
f(x, y) = c crosses itself (as we would have at a saddle point for the associated function
z = f(x, y)), since then there are ‘really’ two tangent slopes, and a single number cannot
give both answers!
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The answer is that, if
dy

dx
is continuous (as most level curves we would draw do suggest),

and fx and fy are differentiable, then L‘Hopital’s Rule can be applied. In one of the rule’s
most basic forms, we then have
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But these are quantities that we can compute using the Chain Rule again!
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Setting m =
dy

dx
, for brevity, this yields

m = −
fxx + fxym

fyx + fyym
, so fyym

2 + (fxy + fyx)m + fxx = 0



Since fxy = fyx, this becomes fyym2 + 2fxym + fxx = 0, which is a quadratic equation in
m yielding two solutions (just as we need!)
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Notice that since a level curve that crosses itself represents a saddle point of the function
z = f(x, y), the Hessian H = fxxfyy − (fxy)2 should be negative at the crossing, and so
the quantity inside of the square root is, in fact, positive!

We illustrate this with an example:

For the function f(x, y) = (x2 + y2)2 + (1 − x)(x2
− y2), the graph of f(x, y) = 0 has a

double point at (0, 0) (see the figure above). Since

fx = 2(x2 + y2)2x − (x2
− y2) + (1 − x)(2x) and

fy = 2(x2 + y2)2y + (1 − x)(−2y)

are both 0 at (0.0), we can use the above approach to compute the two values of dy/dx.
A routine computation finds that

fxx = 12x2 + 4y2
− 6x + 2

fxy = 8xy + 2y
fyy = 12y2 + 4x2 + 2x − 2

So at (x, y) = (0, 0 we have two slopes m, which are the solutions to −2m2 + 2 = 0 ; that
is, m = 1 and m = −1.


