
Math 221

Topics since the second exam

Laplace Transforms.

There is a whole different set of techniques for solving n-th order linear equations, which are
based on the Laplace transform of a function. For a function f(t), it’s Laplace transform
is

L{f} = L{f}(s) =

∫

∞

0

e−stf(t) dt

The domain of L{f} is all values of s where the improper integral converges. For most basic
functions f , L{f} can be computed by integrating by parts. A list of such transforms can
be found on the handout from class. The most important property of the Laplace transform
is that it turns differentiation into multiplication by s. that is:

L{f ′}(s) = sL{f}(s)− f(0)

more generally, for the n-th derivative:

L{f (n)}(s) = snL{f}(s)− sn−1f(0) − sn−2f ′(0) − · · · − f (n−1)(0)

The Laplace transform is a linear operator in the same sense that we have used the term
before: for any functions f and g, and any constants a and b,

L{af + bg} = aL{f} + bL{g}

(since integration is a linear operator). We can therefore use Laplace transforms to solve
linear (inhomogeneous) equations (with constant coefficients), by applying L to both sides
of the equation:

ay′′ + by′ + cy = g(t)

becomes

(as2 + bs + c)L{y} − asy(0)− ay′(0) − by(0) = L{g}, i.e.

L{y} =
L{g}(s) + asy(0) + ay′(0) + by(0)

as2 + bs + c

So to solve our original equation, we need to find a function y whose Laplace transform
is this function on the right. It turns out there is a formula (involving an integral) for the
inverse Laplace transform L−1, which in principle will solve our problem, but the formula
is too complicated to use in practice. Instead, we will develop techniques for recognizing
functions as linear combinations of the functions appearing as the right-hand sides of the
formulas in our Laplace transform tables. Then the function y we want is the corresponding
combination of the functions on the left-hand sides of the formulas, because the Laplace
transform is linear! Note that this approach incorporates the initial value data y(0), y′(0)
into the solution; it is naturally suited to solving initial value problems.

To do this we need to start with a collection of functions whose Laplace transforms we
have computed; this should include the kinds of functions we have found as solutions to
DEs we have so far encountered, namely products made out of the functions tn, eat, and
sin(bt) or cos(bt). These have been assembled in our standard Laplace transforms table.
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Along the way to building our table of transforms, we learned several more general rules:

If L{f(t)} = F (s) then L{f ′(t)} = sF (s) − f(0)
If L{f(t)} = F (s) then L{eatf(t)} = F (s − a)
If L{f(t)} = F (s) then L{tf(t)} = −F ′(s)

Our basic technique for using our table of Laplace transforms to find solutions is partial

fractions: we will content ourselves with a simplified form of it, sufficient for solving second
order equations. The basic idea is that we need to find the inverse Laplace transform of
a function having a quadratic polynomial as2 + bs + c in its denomenator. Partial
fractions tells us that, if we can factor as2 + bs + c = a(x − r1)(x − r2), where r1 6= r2,
then any function

ms + n

as2 + bs + c
=

A

s − r1
+

B

s − r2

for appropriate constants A and B. We can find the constants by writing

A

s − r1
+

B

s − r2
=

A(s − r2) + B(s − r1)

(s − r1)(s − r2)
=

Aa(s − r2) + Ba(s − r1)

as2 + bs + c

so we must have ms + n = Aa(s − r2) + Ba(s − r1); setting the coefficients of the two
linear functions equal to one another, we can solve for A and B. We can therefore find
the inverse Laplace transform of (ms + n)/(as2 + bs + c) as a combination of the inverse
transforms of (s − r1)

−1 and (s − r2)
−1, which can be found on the tables!

If r1 = r2, then we instead write

ms + n

as2 + bs + c
=

A

s − r1
+

B

(s − r1)2
=

a(A(s− r1) + B)

a(s − r1)2
=

a(A(s − r1) + B)

as2 + bs + c

anbd solve for A and B as before.

Finally, if we cannot factor as2 + bs + c (i.e, it has complex roots), we can then write it as
(a times) a sum of squares, by completing the square:

as2 + bs + c = a((s − α)2 + β2), so

ms + n

as2 + bs + c
=

Aβ

a((s − α)2 + β2)
+

B(s − α)

a((s − α)2 + β2)
=

A

a

β

(s − α)2 + β2
+

B

a

s − α

(s − α)2 + β2

for appropriate constants A and B (which we solve for by equating the numerators), and

so it is a linear combination of
β

(s − α)2 + β2
and

(s − α)

(s − α)2 + β2
, both of which appear

on our tables!

Handling higher degree polynomials in the denomenator is similar; if all roots are real and
distinct, we write our quotient as a linear combination of the functions (s−ri)

−1, combine
into a single fraction, and set the numerators equal; if we have repeated roots, we include
terms in the sum with successively higher powers (s − ri)

−k (where k runs from 1 to the
multiplicity of the root). Complex roots are handled by inserting the term we dealt with
above into the sum.
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Discontinuous external force.

One area in which Laplace transforms provide a better framework for working out solutions
than our ”auxiliary equation” approach is when we are trying to solve an equation

ay′′ + by′ + cy = g(t)

where g(t) is discontinuous, or defined in pieces over different time intervals. The model
for a discontinuous function is the step function u(t) :

u(t) =

{

1 if t ≥ 0

0 if t < 0

More generally, the function u(t − a) has

u(t − a) =

{

1 if t ≥ a

0 if t < a

So, for example, the function which is t for 3 ≤ t ≤ 5, and is 0 everywhere else, can be
expressed as g(t) = t(u(t − 3) − u(t − 5)). We can streamline things somewhat by writing
u(t − a) − u(t − b) = χ[a,b](t) = the characteristic function of the interval [a, b] ; it is 1
between a and b, and 0 everywhere else. So, for example, the piecewise-defined function

f(t) =











t if 0 ≤ t ≤ 2

5 − t if 2 < t < 5

3 if t ≥ 5

can be expressed as

f(t) = tχ[0,2](t) + (5 − t)χ[2,5](t) + 3χ[5,∞)(t)
= t(u(t) − u(t − 2)) + (5 − t)(u(t − 2) − u(t − 5)) + 3u(t − 5)

We can find the Laplace transform of such a function by finding the transform of functions
of the form f(t)u(t − a), which we can do directly from the integral, by making the
substitution x = t − a:
L{f(t)u(t − a)} =

∫

∞

0
e−stf(t)u(t − a) dt =

∫

∞

a
e−stf(t) dt =

∫

∞

0
e−s(t+a)f(t + a) dt =

e−as
∫

∞

0
e−stf(t + a) dt = e−asL{f(t + a)} .

Turning this around, we find that the inverse Laplace transform of the function e−asL{f}(s)
is f(t−a)u(t−a). So if we can find the inverse transform of a function F (s) (in our tables),
this tells us how to find the inverse transform of e−asF (s). This is turn gives us a method
for solving any initial value problem, in principle, whose inhomogeneous term f(t) has
finitely many values where it is discontinuous, by writing f(t) as a sum of functions of the
form fi(t)u(t − ai), as above.

For example, to find the solution to the differential equation

y′′ + 2y′ + 5y = g(t) , y(0) = 2 , y′(0) = 1 , where g(t) is the function which is 5
for 2 ≤ t ≤ 4 and 0 otherwise, we would (after taking Laplace transforms and simplifying)
need to find the inverse Laplace transform of the function

F (s) =
2s + 5

s2 + 2s + 5
+

5(e−2s − e−4s)

s(s2 + 2s + 5)

Applying our partial fractions techniques, we find that
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F (s) = 2
s + 1

(s + 1)2 + 22
+

3

2

2

(s + 1)2 + 22
+

(

1

s
−

s + 1

(s + 1)2 + 22

1

2
−

2

(s + 1)2 + 22

)

e−2s

−

(

1

s
−

s + 1

(s + 1)2 + 22
−

1

2

2

(s + 1)2 + 22

)

e−4s

We can apply L−1 to each term, using L−1{e−asL{f}(s)} = f(t − a)u(t − a) for the last
6 terms (since after removing e−2s and e−4s the remainder of each term is in our tables).
For example,

L−1{
s + 1

(s + 1)2 + 22
e−2s} = e−(t−2) cos(2(t − 2))u(t − 2) . The final solution, as the

interested reader can work out, is

y = 2e−t cos(2t) +
3

2
e−t sin(2t)

+

[

1 − e−(t−2) cos(2(t − 2)) −
1

2
e−(t−2) sin(2(t − 2))

]

u(t − 2)

−

[

1 − e−(t−4) cos(2(t − 4)) −
1

2
e−(t−4) sin(2(t − 4))

]

u(t − 4)

Isolating external force and initial conditions.

Given an nth order, inhomogeneous, constant coefficients, linear initial value problem,

L(x) = f(t) , x(0) = a0, . . . , x(n−1)(0) = an−1

if we apply the Laplace transform to both sides, we get an equation P (s)L{x} − I(x) =
L{f(t)} = F (s), where P (s) is the auxiliary polynomial for the DE, and I(s) is a polyno-
mial (of degree n−1) whose coefficients are determined by the the initial values a0, . . . , an−1.
Solving this equation for L{x}, we get

L{x} =
F (s)

P (s)
+

I(s)

P (s)
= A(s) + B(s)

and so our solution x(t) is the sum of the inverse Laplace transforms of A and B. If we
have f(t) = 0, then F (s) = 0, so A(s) = 0, so L−1{A(s)} = 0; this means that L−1{B(s)}
is really just the solution to the associated homogeneous IVP. On the other hand, if all of
the initial values are 0 (we have “trivial” initial conditions), then I(s) = 0, so B(s) = 0,
so L−1{B(s)} = 0; this means that L−1{A(s)} is the solution to our inhomogenous DE
with trivial initial conditions, i.e., it is precisely the particular solution with trivial initial
conditions. This has the effect of isolating the initial conditions from the inhomogeneity
term (in the language of spring-mass problems, the external force term), and allows to
solve our IVP by solving these two problems separately.

This leads to a viewpoint on solving IVPs using Laplace transforms known as Duhamel’s

principle. The idea is that the particular solution with trivial initial conditions is precisely

L−1{
F (s)

P (s)
} = L−1{

1

P (s)
F (s)}

But we know that L−1{F (s)} = f(t), and since P (s) is a polynomial, we can use partial
fractions methods to compute L−1{1/P (s)} = g(t). What we would like is a way to
compute the inverse Laplace transform of the product of F (s) and 1/P (s) in terms of
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f and g. And it turns out that we can, that is, we can find a function whose Laplace
transform is the product of F (s) and 1/P (s). It is the convolution of f and g.

More precisely, if L{f(t)} = F (s) and L{g(t)} = G(s), then L{(f ∗ g)(t)} = F (s)G(s),
where

(f ∗ g)(t) =
∫ t

0
f(u)g(t− u) du

The convolution product satisfies (f ∗ g)(t) =
∫ t

0
f(u)g(t − u) du =

∫ t

0
g(v)f(t − v) dv =

(g ∗f)(t) (as the substitution v = t−u will verify), so we can place the term t−u in either
function, as an aid to finding the quicker way to evaluate this integral in practice. Putting
this together with our observations above, the solution to any linear constant coefficient
IVP L(x) = f(t) is

x(t) = (f ∗ g)(t) + [the solution to the corresponding homogeneous IVP]

Where g(t) is the inverse Laplace transform of 1/[the auxiliary polynomial of the DE]. This
is Duhamel’s principle. This formulation is especially useful when you have the solution to
the homogenous IVP (say, using Laplce transforms!, or one of our earlier methods), and
wish to determine the effects of changing the external force term f(t) on the solution to the
IVP (say, for designing a system to cancel out the vibrations in some piece of equipment).
In a damped spring-mass system, for example, the homogenous solution will tend to 0
as t → ∞, and all that will be left in the long run is (f ∗ g)(t). In general, when our
other methods for computing particular solutions fail (i.e., give difficult integrals), so will
this! But we can readily employ numerical methods (the trapezoid or Simpson’s rule) to
approximate (f ∗ g)(t), in order to understand the solutions.
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