
Math 107H

Topics for the second exam

(Technically, everything covered on the first exam plus...)

Infinite sequences and series

Limits of sequences of numbers

A sequence is: a string of numbers; a function f :N→R; write f(n) = an
an = n-th term of the sequence

Basic question: convergence/divergence
lim

n→∞

an = L (or an → L) if

eventually all of the an are always as close to L as we like, i.e.
for any ε > 0, there is an N so that if n ≥ N then |an − L| < ε

Ex.: an = 1/n converges to 0 ; can always choose N=1/ε
an = (−1)n diverges; terms of the sequence never settle down to a single number

If an is increasing (an+1 ≥ an for every n) and bounded from above
(an ≤ M for every n, for some M) , then an converges (but not necessarily to M !)

limit is smallest number bigger than all of the terms of the sequence

Limit theorems for sequences

Idea: limits of sequences are a lot like limits of functions

If an → L and bn → M , then
(an + bn → L + M (an − bn) → L − M (anbn) → LM , and

(an/bn) → L/M (provided M , all bn are 6= 0)

Sqeeze play theorem: if an ≤ bn ≤ cn (for all n large enough) and
an → L and cn → L , then bn → L

If an → L and f :R→R is continuous at L, then f(an) → f(L)

if an = f(n) for some function f :R→R and lim
x→∞

f(x) = L , then an → L

(allows us to use L’Hopital’s Rule!)

Another basic list: (x = fixed number, k = konstant)
1

n
→ 0 k → k x

1

n → 1

n
1

n → 1 (1 +
x

n
)n → ex xn

n!
→ 0

xn →
{

0, if |x| < 1 ; 1, if x = 1 ; diverges, otherwise
}

Infinite series

An infinite series is an infinite sum of numbers

a1 + a2 + a3 + . . . =

∞
∑

n=1

an (summation notation)

n-th term of series = an ; N -th partial sum of series = sN =
N

∑

n=1

an

An infinite series converges if the sequence of partial sums
{

sN

}

∞

N=1
converges

We may start the series anywhere:

∞
∑

n=0

an,

∞
∑

n=1

an,

∞
∑

n=3437

an, etc. ;

convergence is unaffected (but the number it adds up to is!)
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Ex. geometric series: an = arn ;

∞
∑

n=0

an =
a

1 − r

if |r| < 1; otherwise, the series diverges.

Ex. Telescoping series: partial sums sN ‘collapse’ to a simple expression

E.g.
∞
∑

n=1

1

n(n + 2)
=

∞
∑

n=1

1

2

( 1

n
−

1

n + 2

)

; sN =
1

2

(1

1
+

1

2
−

( 1

N + 1
+

1

N + 2

))

n-th term test: if
∞
∑

n=1

an converges, then an → 0

So if the n-th terms don’t go to 0, then

∞
∑

n=1

an diverges

Basic limit theorems: if

∞
∑

n=1

an and

∞
∑

n=1

bn converge, then

∞
∑

n=1

(an + bn)=

∞
∑

n=1

an+

∞
∑

n=1

bn

∞
∑

n=1

(an − bn)=

∞
∑

n=1

an-

∞
∑

n=1

bn

∞
∑

n=1

(kan)= k

∞
∑

n=1

an

Truncating a series:

∞
∑

n=1

an =

∞
∑

n=N

an +

N−1
∑

n=1

an

Comparison tests

Again, think
∞
∑

n=1

an , with an ≥ 0 all n

Convergence depends only on partial sums sN being bounded
One way to determine this: compare series with

one we know converges or diverges

Comparison test: If bn ≥ an ≥ 0 for all n (past a certain point), then

if
∞
∑

n=1

bn converges, so does
∞
∑

n=1

an ; if
∞
∑

n=1

an diverges, so does
∞
∑

n=1

bn

(i.e., smaller than a convergent series converges; bigger than a divergent series diverges)

More refined: Limit comparison test: an and bn ≥ 0 for all n,
an

bn
→ L

If L 6= 0 and L 6= ∞, then
∑

an anf
∑

bn either both converge or both diverge

If L = 0 and
∑

bn converges, then so does
∑

an

If L = ∞ and
∑

bn diverges, then so does
∑

an

(Why? eventually (L/2)bn ≤ an ≤ (3L/2)bn ; so can use comparison test.)

Ex:
∑

1/(n3 − 1) converges; L-comp with
∑

1/n3

∑

n/3n converges; L-comp with
∑

1/2n

∑

1/(n ln(n2 + 1) diverges; L-comp with
∑

1/(n lnn)
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The integral test

Idea:

∞
∑

n=1

an with an ≥ 0 all n, then the partial sums

{sN}∞N=1 forms an increasing sequence;
so converges exactly when bounded from above

If (eventually) an = f(n) for a decreasing function f : [a,∞) →R, then
∫ N+1

a+1

f(x) dx ≤ sN =
N

∑

n=a

an ≤

∫ N

a

f(x) dx

so
∞
∑

n=a

an converges exactly when

∫

∞

a

f(x) dx converges

Ex:

∞
∑

n=1

1

np
converges exactly when p > 1 (p-series)

The ratio and root tests

A series
∑

an converges absolutely if
∑

|an| converges.

If
∑

|an| converges then
∑

an converges

Previous tests have you compare your series with something else (another series,
an improper integral); these tests compare a series with itself (sort of)

Ratio Test:
∑

an, an 6= 0 all n; lim
n→∞

∣

∣

an+1

an

∣

∣ = L

If L < 1 then
∑

an converges absolutely

If L > 1, then
∑

an diverges

If L = 1, then try something else!

Root Test:
∑

an, lim
n→∞

|an|
1/n = L

If L < 1 then
∑

an converges absolutely

If L > 1, then
∑

an diverges

If L = 1, then try something else!

Ex:
∑ 4n

n!
converges by the ratio test

∑ n5

nn
converges by the root test

Power series

Idea: turn a series into a function, by making the terms an depend on x
replace an with anxn ; series of powers

∞
∑

n=0

anxn = power series centered at 0
∞
∑

n=0

an(x − a)n = power series centered at a

Big question: for what x does it converge? Solution from ratio test

lim
∣

∣

∣

an+1

an

∣

∣

∣
= L, set R =

1

L
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then

∞
∑

n=0

an(x − a)n converges absolutely for |x − a| < R

diverges for |x − a| > R ; R = radius of convergence

Ex.:

∞
∑

n=0

xn =
1

1 − x
; conv. for |x| < 1

Why care about power series?

Idea: partial sums

n
∑

k=0

akxk are polynomials;

if f(x)=
∞
∑

n=0

anxn, then the poly’s make good approximations for f

Differentiation and integration of power series

Idea: if you differentiate or integrate each term of a power series, you get a power
series which is the derivative or integral of the original one.

If f(x) =
∞
∑

n=0

an(x − a)n has radius of conv R,

then so does g(x) =
∞
∑

n=1

nan(x − a)n−1, and g(x) = f ′(x)

and so does g(x) =
∞
∑

n=0

an

n + 1
(x − a)n+1, and g′(x) = f(x)

Ex: f(x) =

∞
∑

n=0

xn

n!
, then f ′(x) = f(x) , so (since f(0) = 1) f(x) = ex =

∞
∑

n=0

xn

n!

Ex.:
1

1 − x
=

∞
∑

n=0

xn, so − ln(1 − x) =

∞
∑

n=0

xn+1

n + 1
(for |x| < 1), so

(replacing x with −x) ln(x + 1) =
∞
∑

n=0

(−1)nxn+1

n + 1
, so

(replacing x with x − 1) ln(x) =
∞
∑

n=0

(−1)n(x − 1)n+1

n + 1

Ex:. arctanx =

∫

1

1 − (−x2)
dx =

∫ ∞
∑

n=0

(−x2)n dx =

∞
∑

n=0

(−1)nx2n+1

2n + 1
(for |x| < 1)
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Taylor series

Idea: start with function f(x), find power series for it.

If f(x) =

∞
∑

n=0

an(x − a)n, then (term by term diff.)

f (n)(a) = n!an ; So an =
f (n)(a)

n!

Starting with f , define P (x) =
∞
∑

n=0

f (n)(a)

n!
(x − a)n ,

the Taylor series for f , centered at a.

Pn(x) =

n
∑

k=0

f (k)(a)

k!
(x − a)k , the n-th Taylor polynomial for f .

Ex.: f(x) = sin x, then P (x) =
∞
∑

n=0

(−1)n

(2n + 1)!
x2n+1

Big questions: Is f(x) = P (x) ? (I.e., does f(x) − Pn(x) tend to 0 ?)
If so, how well do the Pn’s approximate f ? (I.e., how small is f(x) − Pn(x) ?)

Error estimates

f(x) =

∞
∑

n=0

f (n)(a)

n!
(x − a)n

means that the value of f at a point x (far from a) can be determined just from
the behavior of f near a (i.e., from the derivs. of f at a). This is a very powerful property,
one that we wouldn’t ordinarily expect to be true. The amazing thing is that it often is:

P (x, a) =
∞
∑

n=0

f (n)(a)

n!
(x − a)n ; Pn(x, a) =

n
∑

k=0

f (k)(a)

k!
(k − a)n ;

Rn(x, a)= f(x)− Pn(x, a) = n-th remainder term = error in using Pn to approxi-
mate f

Taylor’s remainder theorem : estimates the size of Rn(x, a)
If f(x) and all of its derivatives (up to n + 1) are continuous on [a, b], then

f(b) = Pn(b, a) +
f (n+1)(c)

(n + 1)!
(b − a)n+1 , for some c in [a, b]

i.e., for each x, Rn(x, a) =
f (n+1)(c)

(n + 1)!
(x − a)n+1 , for some c between a and x

so if |F (n+1)(x)||leqM for every x in [a, b], then |Rn(x, a)| ≤
M

(n + 1)!
(x − a)n+1

for every x in [a, b]

Ex.: f(x)=sin x, then |f (n+1)(x)| ≤ 1 for all x, so |Rn(x, 0)| ≤
|x|n+1

(n + 1)!
→ 0 as n → ∞

so sinx =

∞
∑

n=0

(−1)n

(2n + 1)!
x2n+1

Similarly, cos x =

∞
∑

n=0

(−1)n

(2n)!
x2n
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Use Taylor’s remainder to estimate values of functions:

ex =
∞
∑

n=0

(x)n

(n)!
, so e=e1=

∞
∑

n=0

1

(n)!

|Rn(1, 0)| =
f (n+1)(c)

(n + 1)!
=

ec

(n + 1)!
≤

e1

(n + 1)!
≤

4

(n + 1)!
since e < 4 (since ln(4) > (1/2)(1) + (1/4)(2) = 1)

(Riemann sum for integral of 1/x)

so since
4

(13 + 1)!
= 4.58×10−11,

e = 1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
+ · · ·+

1

13!
, to 10 decimal places.

Other uses: if you know the Taylor series, it tells you the values of the derivatives at
the center.

Ex.: ex=

∞
∑

n=0

(x)n

(n)!
, so

xex =

∞
∑

n=0

(x)n+1

(n)!
, so

15th deriv of xex , at 0, is 15!(coeff of x15) =
15!

14!
= 15

Substitutions: new Taylor series out of old ones

Ex. sin2 x =
1 − cos(2x)

2
=

1

2
(1 −

∞
∑

n=0

(−1)n(2x)2n

(2n)!

=
1

2
(1 − (1 −

(2x)2

2!
+

(2x)4

4!
−

(2x)6

6!
+ · · ·

= 2x2

2!
− 23x4

4!
+ 25x6

6!
− 27x8

8!
+ · · ·

Integrate functions we can’t handle any other way:

Ex.: ex2

=

∞
∑

n=0

(x)2n

(n)!
, so

∫

ex2

dx =
∞
∑

n=0

(x)2n+1

n!(2n + 1)
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