Math 107H
Topics for the second exam

(Technically, everything covered on the first exam plus...)

Infinite sequences and series
Limits of sequences of numbers
A sequence is: a string of numbers; a function f:N—R; write f(n) = a,
an = n-th term of the sequence

Basic question: convergence/divergence
lim a, =L (or a, — L) if

n—oo
eventually all of the a,, are always as close to L as we like, i.e.

for any e > 0, there is an N so that if n > N then |a, — L| < €

Ex.: a, = 1/n converges to 0 ; can always choose N=1/¢
a, = (—1)™ diverges; terms of the sequence never settle down to a single number

If a, is increasing (a,+1 > a, for every n) and bounded from above
(an, < M for every n, for some M) , then a,, converges (but not necessarily to M !)
limit is smallest number bigger than all of the terms of the sequence
Limit theorems for sequences
Idea: limits of sequences are a lot like limits of functions

If a,, — L and b,, — M, then
(an +b, = L+ M (@ —bp) = L—M (anbn) — LM | and
(an/by) — L/M (provided M, all b,, are # 0)
Sqeeze play theorem: if a,, < b, < ¢, (for all n large enough) and
a, — L and ¢,, — L , then b,, — L
If a,, - L and f:R—R is continuous at L, then f(a,) — f(L)

if a,, = f(n) for some function f:R—R and lim f(z) =L , then a,, — L

(allows us to use L’Hopital’s Rule!)
Another basic list: (z = fixed number, k& = konstant)

1
— —0 k—k av — 1
n
n
nw — 1 (l-l—g)n—)em AN
n n!

a" = {0,if |z <1;1,ifx=1; diverges; otherwise }

Infinite series
An infinite series is an infinite sum of numbers

o0
ap+ax+az+...= Z an, (summation notation)
n=1
N
n-th term of series = a,, ; N-th partial sum of series = sy = Z an
n=1

. . . . . o
An infinite series converges if the sequence of partial sums {3 N} N converges

[e.] o0 oo
We may start the series anywhere: E A, E Qs E an, etc. ;
n—=0 n=1 n=3437

convergence is unaffected (but the number it adds up to is!)
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Ex. geometric series: a, =ar™ ; E Ay =

if |r| < 1; otherwise, the series diverges.
Ex. Telescoping series: partial sums sy ‘collapse’ to a simple expression
o

1 1,1 1 1,1 1 1 1
E'g';m:;ﬁ(ﬁ_n—w)’sN:§(I+§_(N+1+N+2))

n-th term test: if Z an converges, then a,, — 0

n=1
So if the n-th terms don’t go to 0, then Z a, diverges

n=1

o o
Basic limit theorems: if Z a, and Z b, converge, then

n=1

Z (an + bp) Z an—i-z b, Z(an —by)= Z an—z b,
= n=1 n=1 n=1
Z (kay)=k Z an
=t =t o oo N—-1
Truncating a series: Z Ay = Z an + Z an,
n=1 n=N n=1

Comparison tests

oo
Again, think Z an , with a,, >0 all n
n=1
Convergence depends only on partial sums sy being bounded
One way to determine this: compare series with
one we know converges or diverges

Comparison test: If b, > a,, > 0 for all n (past a certain point), then
o o0 o

if Z b, converges, so does Z a, ; if Z an diverges, so does Z by,

(i.e., smaller than a convergent series converges; bigger than a divergent series diverges)

a
More refined: Limit comparison test: a,, and b, > 0 for all n, b—n — L
n

If L # 0 and L # oo, then Z a, anf Z b,, either both converge or both diverge
If L =0 and Z b, converges, then so does Z an

If L =00 and Z b, diverges, then so does Z G,
(Why? eventually (L/2)b,, < a, < (3L/2)b, ; so can use comparison test.)

Ex: Z 1/(n® — 1) converges; L-comp with Z 1/n?
Z n/3" converges; L-comp with Z /2"
Z 1/(nIn(n? + 1) diverges; L-comp with Z 1/(nlnn)
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The integral test

o
Idea: Z an with a,, > 0 all n, then the partial sums
n=1
{sn}%_; forms an increasing sequence;
so converges exactly when bounded from above

If (eventually) a,, = f(n) for a decreasing function f : [a,00) —R, then

N+1 N N
/ f(w)dwgSN:ZGnS/ f(z) dz

+1

(0. @] o0
SO Z an converges exactly when / f(x) dz converges

n=a

(0. @]
1
Ex: Z — converges exactly when p > 1 (p-series)

The ratio and root tests

A series Z a, converges absolutely if Z |ay,| converges.

If Z |ay,| converges then Z a, converges

Previous tests have you compare your series with something else (another series,
an improper integral); these tests compare a series with itself (sort of)

Ratio Test: Zan, an # 0 all n; lim ‘anH ‘ =L

an
If L <1 then Z a, converges absolutely

If L > 1, then Z a, diverges
If L =1, then try something else!

Root Test: Zan, lim |a,|'/" =L

If L <1 then Z a, converges absolutely

If L > 1, then Z a, diverges

If L =1, then try something else!
4qn ] TL5
Ex: Z ) converges by the ratio test Z o converges by the root test

Power series

Idea: turn a series into a function, by making the terms a,, depend on x
replace a,, with a,x" ; series of powers

[e.e]

Z an,x" = power series centered at 0

n=0 00
Z an(x —a)" = power series centered at a
n=0

Big question: for what x does it converge? Solution from ratio test

N 1
lim‘a “‘ — L, set R= =
an L




then Z an(xz —a)™ converges absolutely for |[x —a| < R
n=0
diverges for [x —a| > R; R = radius of convergence

- 1
Ex.: " = —— ; conv. for |z| < 1
> =1 2
Why care about power series?
n

Idea: partial sums g apx” are polynomials;
k=0

if f(x Z anx”, then the poly’s make good approximations for f
n=0

Differentiation and integration of power series

Idea: if you differentiate or integrate each term of a power series, you get a power
series which is the derivative or integral of the original one.

If f(x Z an(r — a)™ has radius of conv R,
n=0
then so does g(x Z na,(x —a)® ", and g(x) = f'(x)
and so does g(z Z an a)", and ¢'(z) = f(x)
n=0""
Ex: f(x) = i{)%, then  f'(z) = f(x) , so (since f(0)=1) f(z) =e” = iofl_?
= ix”, so —In(l—=2)= ij:o zri:ll (for |z| < 1), so
(replacing z with —z) In(z + 1) = g %, S0
(replacing = with x — 1) In(x ni_o% —L" - + . Dl
Ex:. arctanx = /1_(%1.2 = /ni_o:() —?
i % (for |z| < 1)

n=0



Taylor series
Idea: start with function f(z), find power series for it.

If f(x) = Z an(x —a)”™, then (term by term diff.)
n=0

(n)
f™(a) = nla, ; So a, = fi'(a)
n!
> f(n)
Starting with f, define P(x) = Z ! '(a) (z—a)",
— !

the Taylor series for f, centered at a.

— [*)(a) k -
P,(x) = Z (x —a)” , the n-th Taylor polynomial for f.

Ex.: f(z) = sinz, then P(x) = i % 2n+1

n=0

Big questions: Is f(x) = P(z) ? (Le., does f(z) — P,(x) tend to 0 ?)
If so, how well do the P,’s approximate f ? (I.e., how small is f(z) — P,(z) ?)

Error estimates

) (g
fla) =3 LW gy
n=0

n!

means that the value of f at a point = (far from a) can be determined just from
the behavior of f near a (i.e., from the derivs. of f at a). This is a very powerful property,
one that we wouldn’t ordinarily expect to be true. The amazing thing is that it often is:

) (g "L K (q
P@,@:ZOf nf )(x—a)”;Pn(a:,a):kZOf kf )(k—a)”;

R, (z,a)= f(z) — P,(x,a) = n-th remainder term = error in using P,, to approxi-

mate
Taylor’s remainder theorem : estimates the size of R, (z,a)
If f(x) and all of its derivatives (up to n + 1) are continuous on [a, b], then

f(b) = P,(b,a) + M(b —a)"*! | for some c in [a, b]
- n Y (n + 1)! ) )
Fo(e) 1
i.e., for each =, R,(z,a) = ~——(z —a)" ™! , for some c between a and x
(n+1)!
M
so if |[F("+1)(x)||legM for every z in [a,b], then |R,(z,a)| < et 1)'(33 —a)"t!
n !
for every x in [a, b]
n+1
Ex.: f(x)=sinz, then |f("+V)(z)| < 1 for all z, so | R, (,0)| < (LfL_ 0 —0asn — o0
. S (_1)n 2n+1
SO SInNx = Z mfl)
n=0
oo _1 n
Similarly, cosz = nz_% ((Qn))! 2"



Use Taylor’s remainder to estimate values of functions:
[e%) (l’)n ) 00 1

e’ = SO e=e = —
2 o 2

Ra(0) = L0 e e 1
(L 0= = o ) S v 1) S (1))
since e < 4 (since In(4) > (1/2)(1) + (1/4)(2) =1

(Riemann sum for integral of 1/x)

4
So since m = 4.58 X 10_11,
1+1 L 1 L L L to 10 d 1 pl
e=1+ +2+6+ﬂ+1—20+ -1-13‘, o ecimal places.

Other uses: if you know the Taylor series, it tells you the values of the derivatives at
the center.

15!
15th deriv of ze® , at 0, is 15!(coeff of z1°) = = 15

Substitutions: new Taylor series out of old ones

9 1—cos(2z) 1 - i (—1)"(2z)%"

Ex. sin®x = = —(
|
22 42 = (2n)!
1 2x 2x 2x
g @ et e
2 2 3,4 2"!5 6 74!8 6'
2%_25 +26T _289'6 +

00 2
Ex.: eI2 = Z (:z:) n SO
n=0 n



