Math 107H

Topics for the second exam

(Technically, everything covered on the first exam plus...)

Infinite sequences and series

Limits of sequences of numbers

A sequence is: a string of numbers; a function $f:\mathbb{N}\rightarrow\mathbb{R}$; write $f(n)=a_n$ $a_n = n$ -th term of the sequence

Basic question: convergence/divergence

 $\lim_{n \to \infty} a_n = L$ (or $a_n \to L$) if

eventually all of the a_n are always as close to L as we like, i.e.

for any $\epsilon > 0$, there is an N so that if $n \geq N$ then $|a_n - L| < \epsilon$

Ex.: $a_n = 1/n$ converges to 0; can always choose $N=1/\epsilon$

 $a_n = (-1)^n$ diverges; terms of the sequence never settle down to a single number

If a_n is increasing $(a_{n+1} \ge a_n$ for every n) and bounded from above

 $(a_n \leq M$ for every n, for some M), then a_n converges (but not necessarily to M!) limit is smallest number bigger than all of the terms of the sequence

Limit theorems for sequences

Idea: limits of sequences are a lot like limits of functions

If
$$
a_n \to L
$$
 and $b_n \to M$, then
\n $(a_n + b_n \to L + M$ $(a_n - b_n) \to L - M$ $(a_n b_n) \to LM$, and
\n $(a_n/b_n) \to L/M$ (provided M , all b_n are $\neq 0$)

Sqeeze play theorem: if $a_n \leq b_n \leq c_n$ (for all n large enough) and $a_n \to L$ and $c_n \to L$, then $b_n \to L$

If $a_n \to L$ and $f: \mathbf{R} \to \mathbf{R}$ is continuous at L, then $f(a_n) \to f(L)$

if $a_n = f(n)$ for some function $f: \mathbf{R} \to \mathbf{R}$ and $\lim_{x \to \infty} f(x) = L$, then $a_n \to L$

(allows us to use L'Hopital's Rule!)

Another basic list: $(x = fixed number, k =$ konstant)

$$
\frac{1}{n} \to 0 \qquad k \to k \qquad x^{\frac{1}{n}} \to 1
$$

\n
$$
n^{\frac{1}{n}} \to 1 \qquad (1 + \frac{x}{n})^n \to e^x \qquad \frac{x^n}{n!} \to 0
$$

\n
$$
x^n \to \{ 0, \text{ if } |x| < 1 \text{ ; } 1, \text{ if } x = 1 \text{ ; diverges, otherwise } \}
$$

Infinite series

An infinite series is an infinite sum of numbers
\n
$$
a_1 + a_2 + a_3 + \ldots = \sum_{n=1}^{\infty} a_n
$$
 (summation notation)

n-th term of series = a_n ; N-th partial sum of series = s_N = \sum N $n=1$ a_n An infinite series **converges** if the sequence of partial sums $\{s_N\}_{N=1}^{\infty}$ converges We may start the series anywhere: $\sum_{n=1}^{\infty}$ $n=0$ $a_n, \sum_{n=1}^{\infty}$ $n=1$ $a_n, \sum_{n=1}^{\infty}$ n=3437 a_n , etc. ; convergence is unaffected (but the number it adds up to is!)

Ex. geometric series: a_n

$$
= ar^n ; \quad \sum_{n=0}^{\infty} a_n = \frac{a}{1-r}
$$

if $|r| < 1$; otherwise, the series **diverges**.

Ex. Telescoping series: partial sums s_N 'collapse' to a simple expression

E.g.
$$
\sum_{n=1}^{\infty} \frac{1}{n(n+2)} = \sum_{n=1}^{\infty} \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+2} \right); s_N = \frac{1}{2} \left(\frac{1}{1} + \frac{1}{2} - \left(\frac{1}{N+1} + \frac{1}{N+2} \right) \right)
$$

n-th term test: if
$$
\sum_{n=1}^{\infty} a_n
$$
 converges, then $a_n \to 0$

So if the *n*-th terms **don't** go to 0, then $\sum_{n=1}^{\infty}$ $n=1$ a_n diverges

Basic limit theorems: if $\sum_{n=1}^{\infty}$ $n=1$ a_n and $\sum_{n=1}^{\infty}$ $n=1$ b_n converge, then

$$
\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n
$$

$$
\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n
$$

$$
\sum_{n=1}^{\infty} (ka_n) = k \sum_{n=1}^{\infty} a_n
$$

Truncating a series:

$$
\sum_{n=1}^{\infty} a_n = \sum_{n=N}^{\infty} a_n + \sum_{n=1}^{N-1} a_n
$$

Comparison tests

Again, think $\sum_{n=1}^{\infty}$ $n=1$ a_n , with $a_n \geq 0$ all n Convergence depends only on partial sums s_N being **bounded** One way to determine this: compare series with one we know converges or diverges Comparison test: If $b_n \geq a_n \geq 0$ for all n (past a certain point), then $\int_{\text{if}}^{\infty}$ $n=1$ b_n converges, so does $\sum_{n=1}^{\infty}$ $n=1$ a_n ; if \sum^{∞} $n=1$ a_n diverges, so does \sum^{∞} $n=1$ b_n (i.e., smaller than a convergent series converges; bigger than a divergent series diverges) More refined: Limit comparison test: a_n and $b_n \geq 0$ for all n, a_n b_n $\rightarrow L$ If $L \neq 0$ and $L \neq \infty$, then $\sum a_n$ anf $\sum b_n$ either **both** converge or **both** diverge If $L = 0$ and $\sum b_n$ converges, then so does $\sum a_n$ If $L = \infty$ and $\sum b_n$ diverges, then so does $\sum a_n$ (Why? eventually $(L/2)b_n \le a_n \le (3L/2)b_n$; so can use comparison test.) Ex: $\sum 1/(n^3-1)$ converges; L-comp with $\sum 1/n^3$ $\sum n/3^n$ converges; L-comp with $\sum 1/2^n$ $\sum 1/(n \ln(n^2 + 1)$ diverges; L-comp with $\sum 1/(n \ln n)$

The integral test

Idea: $\sum_{n=1}^{\infty}$ $n=1$ a_n with $a_n \geq 0$ all n, then the partial sums ${s_N}_{N=1}^{\infty}$ forms an increasing sequence; so converges exactly when bounded from above If (eventually) $a_n = f(n)$ for a **decreasing** function $f : [a, \infty) \to \mathbb{R}$, then \int^{N+1} $a+1$ $f(x) dx \leq s_N = \sum$ N $n=a$ $a_n \leq$ \int^N a $f(x) dx$ so $\sum_{n=1}^{\infty}$ $n=a$ a_n converges exactly when $\int_{-\infty}^{\infty}$ a $f(x)$ dx converges Ex: $\sum_{n=1}^{\infty}$ $n=1$ 1 $\frac{1}{n^p}$ converges exactly when $p > 1$ (*p*-series)

The ratio and root tests

A series
$$
\sum a_n
$$
 converges absolutely if $\sum |a_n|$ converges.
If $\sum |a_n|$ converges then $\sum a_n$ converges

Previous tests have you compare your series with **something else** (another series, an improper integral); these tests compare a series with itself (sort of)

Ratio Test: $\sum a_n$, $a_n \neq 0$ all n ; $\lim_{n \to \infty} |$ a_{n+1} a_n $\big| = L$ If $L < 1$ then $\sum a_n$ converges absolutely If $L > 1$, then $\sum a_n$ diverges If $L = 1$, then try something else! Root Test: $\sum a_n$, $\lim_{n\to\infty} |a_n|^{1/n} = L$ If $L < 1$ then $\sum a_n$ converges absolutely If $L > 1$, then $\sum a_n$ diverges If $L = 1$, then try something else! Ex: $\sum \frac{4^n}{1}$ n! converges by the ratio test $\sum_{n=1}^{\infty} \frac{n^5}{n^5}$ $\frac{n}{n^n}$ converges by the root test

Power series

Idea: turn a series into a function, by making the terms a_n depend on x replace a_n with $a_n x^n$; series of powers

$$
\sum_{n=0}^{\infty} a_n x^n
$$
 = power series centered at 0

$$
\sum_{n=0}^{\infty} a_n (x - a)^n
$$
 = power series centered at a

Big question: for what x does it converge? Solution from ratio test

$$
\lim \left| \frac{a_{n+1}}{a_n} \right| = L, \text{ set } R = \frac{1}{L}
$$

then $\sum_{n=1}^{\infty}$ $n=0$ $a_n(x-a)^n$ converges absolutely for $|x-a| < R$ diverges for $|x - a| > R$; $R =$ radius of convergence

Ex.:
$$
\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}
$$
; conv. for $|x| < 1$

Why care about power series?

Idea: partial sums
$$
\sum_{k=0}^{n} a_k x^k
$$
 are polynomials;
if $f(x)=\sum_{n=0}^{\infty} a_n x^n$, then the poly's make good approximations for f

Differentiation and integration of power series

Idea: if you differentiate or integrate each term of a power series, you get a power series which is the derivative or integral of the original one.

If
$$
f(x) = \sum_{n=0}^{\infty} a_n(x - a)^n
$$
 has radius of conv R,
\nthen so does $g(x) = \sum_{n=1}^{\infty} na_n(x - a)^{n-1}$, and $g(x) = f'(x)$
\nand so does $g(x) = \sum_{n=0}^{\infty} \frac{a_n}{n+1}(x - a)^{n+1}$, and $g'(x) = f(x)$
\nEx: $f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$, then $f'(x) = f(x)$, so (since $f(0) = 1$) $f(x) = e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$
\nEx.: $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$, so $-\ln(1-x) = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$ (for $|x| < 1$), so
\n(replacing x with $-x$) $\ln(x + 1) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n+1}$, so
\nreplacing x with $x - 1$) $\ln(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (x - 1)^{n+1}}{n+1}$
\nEx:. arctan $x = \int \frac{1}{1 - (-x^2)} dx = \int \sum_{n=0}^{\infty} (-x^2)^n dx = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$ (for $|x| < 1$)

Taylor series

Idea: start with function $f(x)$, find power series for it.

If
$$
f(x) = \sum_{n=0}^{\infty} a_n (x - a)^n
$$
, then (term by term diff.)
\n $f^{(n)}(a) = n!a_n$; So $a_n = \frac{f^{(n)}(a)}{n!}$
\nStarting with f, define $P(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$,
\nthe Taylor series for f, centered at a.
\n $P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x - a)^k$, the *n*-th Taylor polynomial for f.

Ex.:
$$
f(x) = \sin x
$$
, then $P(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$

Big questions: Is $f(x) = P(x)$? (I.e., does $f(x) - P_n(x)$ tend to 0 ?) If so, how well do the P_n 's approximate f ? (I.e., how small is $f(x) - P_n(x)$?)

Error estimates

$$
f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n
$$

means that the value of f at a point x (far from a) can be determined just from the behavior of f near a (i.e., from the derivs. of f at a). This is a very powerful property, one that we wouldn't ordinarily expect to be true. The amazing thing is that it often is:

$$
P(x,a) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n ; P_n(x,a) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (k-a)^n ;
$$

\n
$$
R_n(x,a) = f(x) - P_n(x,a) = n
$$
-th remainder term = error in using P_n to approxi-

mate f

Taylor's remainder theorem : estimates the size of $R_n(x, a)$

If $f(x)$ and all of its derivatives (up to $n+1$) are continuous on [a, b], then

$$
f(b) = P_n(b, a) + \frac{f^{(n+1)}(c)}{(n+1)!} (b - a)^{n+1}
$$
, for some c in $[a, b]$
i.e., for each x , $R_n(x, a) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - a)^{n+1}$, for some c between a and x
so if $|F^{(n+1)}(x)||log M$ for every x in $[a, b]$, then $|B_n(x, a)| \leq \frac{M}{(x-a)^{n+1}}$

so if $|F^{(n+1)}(x)|| \leq dM$ for every x in $[a, b]$, then $|R_n(x, a)| \leq \frac{M}{(n+1)!}(x - a)^{n+1}$

for every x in $|a, b|$

Ex.: $f(x)=\sin x$, then $|f^{(n+1)}(x)| \leq 1$ for all x , so $|R_n(x,0)| \leq \frac{|x|^{n+1}}{(n+1)!}$ $\frac{1}{(n+1)!} \to 0$ as $n \to \infty$ so $\sin x = \sum_{n=1}^{\infty}$ $n=0$ $(-1)^n$ $\frac{(-1)}{(2n+1)!}x^{2n+1}$ Similarly, $\cos x = \sum_{n=0}^{\infty}$ $n=0$ $(-1)^n$ $\frac{(-1)}{(2n)!}x^{2n}$

Use Taylor's remainder to estimate values of functions:

$$
e^{x} = \sum_{n=0}^{\infty} \frac{(x)^{n}}{(n)!}, \text{ so } e = e^{1} = \sum_{n=0}^{\infty} \frac{1}{(n)!}
$$

\n
$$
|R_{n}(1,0)| = \frac{f^{(n+1)}(c)}{(n+1)!} = \frac{e^{c}}{(n+1)!} \le \frac{e^{1}}{(n+1)!} \le \frac{4}{(n+1)!}
$$

\nsince $e < 4$ (since $\ln(4) > (1/2)(1) + (1/4)(2) = 1$)
\n(Riemann sum for integral of $1/x$)
\nso since $\frac{4}{(13+1)!} = 4.58 \times 10^{-11}$,
\n $e = 1 + 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \dots + \frac{1}{13!}$, to 10 decimal places.

Other uses: if you know the Taylor series, it tells you the values of the derivatives at the center.

Ex.:
$$
e^x = \sum_{n=0}^{\infty} \frac{(x)^n}{(n)!}
$$
, so
 $xe^x = \sum_{n=0}^{\infty} \frac{(x)^{n+1}}{(n)!}$, so

15th deriv of xe^{x} , at 0, is 15!(coeff of x^{15}) = $\frac{15!}{14!}$ $\frac{13!}{14!} = 15$

Substitutions: new Taylor series out of old ones

Ex.
$$
\sin^2 x = \frac{1 - \cos(2x)}{2} = \frac{1}{2} (1 - \sum_{n=0}^{\infty} \frac{(-1)^n (2x)^{2n}}{(2n)!}
$$

\n
$$
= \frac{1}{2} (1 - (1 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} - \frac{(2x)^6}{6!} + \cdots
$$
\n
$$
= \frac{2x^2}{2!} - \frac{2^3 x^4}{4!} + \frac{2^5 x^6}{6!} - \frac{2^7 x^8}{8!} + \cdots
$$

Integrate functions we can't handle any other way:

Ex.:
$$
e^{x^2} = \sum_{n=0}^{\infty} \frac{(x)^2 n}{(n)!}
$$
, so

$$
\int e^{x^2} dx = \sum_{n=0}^{\infty} \frac{(x)^{2n+1}}{n!(2n+1)}
$$