Math 221

Topics since the second exam
Chapter 5: Systems of Equations.

Basic idea: we have several unknown functions z,y, ... of time ¢ , and equations describ-
ing the derivatives of each in terms of ¢,x,y,... . The goal: determine the functions
x(t),y(t),ldots which solve the equations at the same time. Initial value problem: the
value of each function is specified at a specific time: x(tg) = xo, y(t0) = yo,- - - -

Example: Multiple tank problem: several tanks connected by pipes, with solutions of
varying concentrations in them. Applying

rate of change of amount of solute =
(rate at which solute comes in) — (rate at which solute goes out)

to each tank gives a system of equations.

A multiple tank problem gives a linear system of equations: each equation has the form

Yi = a1y1 + - anYn + fi(t)
for some collection of constants ay,...,a, and (usually constant) function f;(t) . Such
systems can be solved by the elimination method; the first equation can be rewritten as y,,
= (some expression), which can then be substituted into the remaining equations to give
n—1 equations in n — 1 unknown functions. The process can then be repeated, yielding, in
the end, a single n-th order linear equation (with constant coefficients) in a single unknown
function. This can then be solved by our earlier techniques.

[ For further details, see the handout from class! |

Autonomous systems: The other kind of system of equations which earlier techniques can
help us solve is autonomous systems; this means that each equation in the system has the
form

yi = filyr, - yn)
with no independent variable ¢ appearing on the right-hand side. For these, we can use
the direction field just as we did for autonomous equations before. For the sake of our
exposition, we will deal with an autonomous system of two equations

:L":f(ac,y) ) y/:g(xmy)
Our solution would be a pair of functions (z(t),y(t)), which we can think of as describing
a parametrized curve in the z-y plane. The tangent vector to this curve is (2/(t),y'(t))
= (f(z(t),y(t)),g(x(t),y(t)) = (f(z,y),9(z,y)). So every solution curve is tangent to
the direction field (f(z,y),g(z,y)) at every point along the curve. So by drawing the
direction field, we can estimate the trajectories of solutions (by not, in general, their
actual parametrizations), by finding curves tangent to the vectors of the field.

The task of drawing a direction field can be simplified by drawing the nullclines of the field,
that is, the curves where f(z,y) = 0 (vertical tangents) and where g(x,y) = 0 (horizontal
tangents). Where such curves cross, we have equilibrium points. These are points where
x'(t) = y'(t) = 0; that is, the constant z- and y-values are constant solutions to the system
of equations.



For a linear system with constant coefficients, the basic shape of the direction field is
completely determined by the roots of the auxiliary equation for the second order equation
obtained from the elimination method. Complex roots give a spiral pattern around the
equilibrium values (and spiralling in or out depending upon whether or not the real part
of the roots are negative or not); real roots will make the direction field point towards the
equilibrium or away from it, depending on if they are negative or positive; if there is one
of each we have one direction pointing in and one pointing out. Details of this may be
found on the handout from class!

For a more general autonomous system, we can linearize the equation at each equilibrium
point (xg,yo), that is, replace our original equations with

v' = [fe(20,y0)]x + [fy (w0, y0)]y » Y = [92(70, Y0)|z + gy (w0, Y0)]y
The behavior of solution curves, near the equilibrium point, are well-represented by the
solutions to the linearized equation.

Chapter 7: Laplace Transforms.

There is a whole different set of techniques for solving n-th order linear equations, which are
based on the Laplace transform of a function. For a function f(t), it’s Laplace transform
is

LUfY = L{f}(s) = / T et (t) de

The domain of £{f} is all values of s where the improper integral converges. For most basic
functions f, £{f} can be computed by integrating by parts. A list of such transforms can
be found on the handout from class. The most important property of the Laplace transform
is that it turns differentiation into multiplication by s. that is:

L{f'}(s) = sL{f}(s) — f(0)
more generally, for the n-th derivative:
L{f}(s) = s"L{fY(s) = s" 71 f(0) = s"2f/(0) —--- — f*71(0)
The Laplace transform is a linear operator in the same sense that we have used the term
before: for any functions f and ¢, and any constants a and b,

L{af +bg} = aL{f} + bL{g}

(since integration is a linear operator). We can therefore use Laplace operators to solve
linear (inhomogeneous) equations (with constant coefficients), by applying £ to both sides
of the equation:

ay” + by’ +cy = g(t)
becomes
(as? + bs + c)L{y} — asy(0) — ay’(0) — by(0) = L{g}, i.e.
Ciy) = L{g}(s) + asy(0) + ay’(0) + by(0)

as? +bs+c
So to solve our original equation, we need to find a function y whose Laplace transform
is this function on the right. It turns out there is a formula (involving an integral) for the
inverse Laplace transform £, which in principle will solve our problem, but the formula

2



is too complicated to use in practice. Instead, we will develop techniques for recognizing
functions as linear combinations of the functions appearing as the right-hand sides of the
formulas in our Laplace transform tables. Then the function y we want is the corresponding
combination of the functions on the left-hand sides of the formulas, because the Laplace
transform is linear! Note that this approach incorporates the initial value data y(0),y’(0)
into the solution; it is naturally suited to solving initial value problems.

Our basic technique for finding solutions is partial fractions: we will content ourselves with
a simplified form of it, sufficient for solving second order equations. The basic idea is that
we need to find the inverse Laplace transform of a function having a quadratic polynomial
as®>+bs+c inits denomenator. Partial fractions tells us that, if we can factor as?+4bs+c
= a(x —r1)(x — r9), where r; # ro, then any function

ms+n A B

5 = +

as*+bs+c s—r1 S—r9

for appropriate constants A and B. We can find the constants by writing

A B A(s—r)+B(s—r1) Aa(s—ry)+ Ba(s—ry)
s—r1 s—ry  (s—ri)(s—ry) as®>+bs+c

so we must have ms +n = Aa(s — r2) + Ba(s — r1); setting the coefficients of the two
linear functions equal to one another, we can solve for A and B. We can therefore find
the inverse Laplace transform of (ms + n)/(as? + bs + ¢) as a combination of the inverse

transforms of (s —ry)~! and (s — 7)™, which can be found on the tables!
If r1 = r9, then we instead write

ms+n A B a(A(s—r1)+B) a(A(s—r1)+ B)
as? +bs+c s—r;  (s—r))? a(s —r1)?  as?+bstc
anbd solve for A and B as before.

Finally, if we cannot factor as? + bs + ¢ (i.e, it has complex roots), we can then write it as
(a times) a sum of squares, by completing the square:

as? +bs+c = a((s — a)? + 4?), so

ms+n Ap B(s — «) B
as?+bs+c  al(s—a)>2+5%)  a((s—a)?+ (?)
A8 B (s—a)
a((s—a)?+02)  a((s—a)?+0?)

for appropriate constants A and B (which we solve for by equating the numerators), and

g (s — )

so it is a linear combination of and , both of which appear

((s—a)2+p%)  ((s —)? +5?)

on our tables!

Handling higher degree polynomials in the denomenator is similar; if all roots are real and
distinct, we write our quotient as a linear combination of the functions (s —r;) ™!, combine
into a single fraction, and set the numerators equal; if we have repeated roots, we include
terms in the sum with successively higher powers (s — ;)% (where k runs from 1 to the
multiplicity of the root). Complex roots are handled by inserting the term we dealt with
above into the sum.



Discontinuous external force.

One area in which Laplace transforms provide a better framework for working out solutions
than our ”auxiliary equation” approach is when we are trying to solve an equation

ay” + by +cy = g(t)
where ¢(t) is discontinuous. The model for a discontinuous function is the step function
u(t) - u(t) =1for ¢t >0 and u(t) =0 for t <0 . More generally, the function u(t — a) has
u(t —a) =1for t > a and u(t —a) =0 for t < a . So, for example, the function which is ¢
for 3 <t <5, and is 0 everywhere else, can be expressed as g(t) = t(u(t — 3) — u(t — 5)).

We can find the Laplace transform of such a function by finding the transform of functions
of the form f(t)u(t — a), which we can do directly from the integral, by making the
substitution r =t — a:

L{f(u(t —a)} = [(Te  f(t)u(t —a) dt = [Ze ' f(t) dt = [T e Ut f(t +a) dt =

e~ s fo e Stf(t+a)dt = e “L{f(t+a)} .

Turning this around, we find that the inverse Laplace transform of the function e=**L{ f}(s)
is f(t—a)u(t—a). So if we can find the inverse transform of a function F'(s) (in our tables),
this tells us how to find the inverse transform of e=*°F'(s). This is turn gives us a method
for solving any initial value problem, in principle, whose inhomogeneous term f(t) has
finitely many values where it is discontinuous, by writing it as a sum of functions of the

form f;(t)u(t — a;).
For example, to find the solution to the differential equation

y' +2y +5y =g(t) ,y0) =2,y (0)=1 |, where g(¢) is the function which is 5
for 2 <t <4 and 0 otherwise, we would (after taking Laplace transforms and simplifying)
need to find the inverse Laplace transform of the function

2s+5 5(e™2% — e~ 1%)

F =
() s2+2s+5  s(s2+2s+5)
Applying our partial fractions techniques, we find that
s+1 3 2 1 s+1 1 2 .
F(s) =2 2 -2 — 2 e
O =2y T e e T T GriEa 2 i
A s+1 1 2 o
—(- - - = e
s (s+1)2422 2(s+1)2+422

We can apply £7! to each term, using L7 {e"*L{f}(s)} = f(t — a)u(t — a) for the last
6 terms (since after removing e~2° and e~** the remainder of each term is in our tables).
For example,

s+1

(s +1)2422
interested reader can work out, is

= e~ (t=2) cos(2(t — 2))u(t — 2) . The final solution, as the

y = 2e" cos(2t)+ get sin(2t)+[1— e~ (=2 cos(2(t—2)) — %e@?) sin(2(t—2))]u(t—2)
L= e 0 cos(2(t — 4)) — %6@4) sin(2(t — 4))Ju(t — 4)



