
Math 221
Topics for first exam

Chapter 1: Introduction
Background
A differential equation is an equation involoving an (unknown) function y and some of
its derivatives. The basic goal is to solve the equation, i.e., to determine which function
or functions satisfy the equation. Differential equations come in several types, and our
techniques for solving them will differ depending on the type.
Ordinary vs. partial: If y is a function of only one variable t, then our differential equation
will involve only derivatives w.r.t. t, and we will call the equation an it ordinary differential
equation. If y is a function of more than one variable, then our differential equation will
involve partial derivatives, and we will call it a partial differential equation. We will deal
almost exclusively with ordinary differential equations in this class.
Systems: Sometimes the rates of change of several functions are inter-related, as with the
populations of a predator y(t) and its prey x(t), where x′ = ax− αxy and y′ = γxy − cy .
We call this a system of differential equations, and its solution would involve finding both
x(t) and y(t).
Order: Techniques for solving differential equations differ depending upon how many
derivatives of our unknown function are involved. The order of a differential equation
is the order of the highest derivative appearing in the equation. The Implicit Function
Theorem tells us that we can rewrite our equation so that it equates the highest order
derivative with an expression involving lower order terms:

y(n) = F (t, y, y′, . . . , y(n−1)

Linear vs. non-linear: A differential equation is linear if it can be written as
a0(t)y(n) + · · · + an−1(t)y′ + an(t)y = g(t)

(i.e., the function F is linear in the variables y, y′, . . . , y(n−1), although it need not be
linear in t). A differential equation is non-linear if it isn’t linear! E.g.,

y′ = y2

is non-linear, while
y′ = (sin t)y/(1 + t2) − cos(cos t)

is linear.
Solutions and Initial Value Problems
Solving a differential equation means to determine which function or functions satisfy the
equation. Our solutions come in two flavors: explicit solutions y = y(t) which provide a
function of t which satisfies the equation, and implicit solutions which provide an equation
g(y, t) = 0 which any explicit solution would have to satisfy. The idea is that we can treat
g(y, t) = 0 as implicitly defining y as a function of t; given a specific value t = c for t,
we solve (numerically?) g(y, c) = 0 for y to determine the value of the solution to the
differential equation at c.
In general, a differential equation y′ = f(t, y) will have many solutions; but typically one
particular solution can be specified by requiring one additional condition be met; that y
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take a specific value y0 at a specific point t0. If we think of the time t0 as the time at
which we “start” our solution, then we call the pair of equations

y′ = f(t, y) y(t0) = y0

an initial value problem (or IVP). There is a general result which gives conditions guaran-
teeing that an IVP has a solution:

If y′ = f(t, y) is a differential equation with both f and
∂f

∂y
continuous for a < t < b and

α < y < β, and t0 ∈ (a, b) and y0 ∈ (α, β), then for some h > 0, the initial value problem
y′ = f(t, y) , y(t0) = y0

has a unique solution for t ∈ (t0 − h, t0 + h) .
In general, however, the size of the interval where we can guarantee existence (and unique-
ness) can be very small, and often depends on the choice of initial value! For example, for
the equation

y′ = y2

the righthand side is continuous everywhere (as is the partial derivative), but the interval
we can choose for the solutions y = −1/(t + c) depends on c, which will depend on the
initial condition! And it can never be chosen to be the entire real line.
Failure to satisfy the hypotheses of the result can easily kill both existence and uniqueness.
For example, the equation

y′ = y1/3

has many solutions with the initial condition y(0) = 0, such as y = 0 and y = (2t/3)3/2 .
Direction Fields
In many cases, especially for first order differential equations, we can ‘see’ what a solution
should look like without actually finding the solution. For first order equations, y′ = f(t, y),
a solution y(t) will satisfy y′(t) = f(t, y(t)), and so we can think of f(t, y) as giving the
slope of the tangent line to the graph of y(t) at the point (t,y(t)). But since the function
f is already known, we can draw small line segments at ‘every’ point of the t-y plane with
slope f(t, y) at the point (t, y); this is called the direction field for our differential equation.
A solution to our differential equation is simply a function whose graph is tangent to each
of these line segments at every point along the graph. Thinking of the direction field as
a velocity vector field (always pointing to the right), our solution is then the path of a
particle being pushed along by the velocity vector field. From this point of view it is not
hard to believe that every (first order ordinary) differential equation has a solution, in fact
many solutions; you just drop a particle in and watch where it goes. Where you drop it
is important (it changes where it goes), which really is what gives rise to the notion of an
initial value problem; we seek to find the specific solution with the additional initial value
y(t0) = y0.

The Approximation Method of Euler
Most first order equations cannot be solved by the methods we will present here; the
function f(y, t) is too complicated. For such equations, the best we can often do is to
approximate the solutions, using numerical techniques. One method is the tangent line

2



method, also known as Euler’s method. The idea is that our differential equation y′ = f(t, y)
tells us the slope of the tangent line at every point of our solution, and the tangent line
can be used to approximate the graph of a function, at least close to the point of tangency.
In other words, for a solution to our differential equation,

y(t) ≈ y(t0) + y′(t0)(t − t0) = y0 + f(t0, y0)(t − t0)
for t − t0 small. If we wish to approximate y(t) for a value of t far away from our initial
value t0, we use the above idea in several steps. We cut up the interval into n pieces of
length h (called the stepsize), and then set

y1 = y0 + f(t0, y0)h , t1 = t0 + h
y2 = y1 + f(t1, y1)h , t2 = t1 + h
y3 = y2 + f(t2, y2)h , t3 = t2 + h

and continue until we reach yn, which will be our approximation to y(t) = y(tn) . Each
step can be thought of as a mid-course correction, using information about the direction
field at each stage to determine which way the solution is tending.
Calculus teaches us that at each stage the error introduced is approximately proportional
to the square of h. So with a stepsize half as large, we will require twice as many steps,
but each introduces an error only about one-fourth as large, so overall we get an error only
half as large. This leads us to conclude that as the stepsize goes to 0, the error between
our approximate solution yn and y(tn) goes to 0.

Chapter 2: First Order Differential Equations
Separable Equations
There is a class of first order equations for which we can readily find solutions by inte-
gration; there are the separable equations. A differential equation is separable if it can be
written as

y′ = A(t)B(y)
This allows us to ‘separate the variables’ and integrate with respect to dy and dt to get a
solution:

1
B(y)

dy = A(t) dt ; integrate both sides

In the end, our solution looks like F (y) = G(t) + c, so it defines y implicitly as a function
of t , rather than explicitly. In some cases we can invert F to get an explicit solution, but
often we cannot.
For example, the separable equation y′ = ty2 , y(1) = 2 has solution∫

dy

y2
=

∫
t dt + c

so solving the integrals we get (−1/y) = (t2/2) + c, or y = −2/(t2 + 2c) ; setting y = 2
when t = 1 gives c = −1 .
Linear Equations
Perhaps the most straightforward sort of differential equation to solve is the first order
linear ordinary differential equation

y′ = a(t)y + b(t)
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We will typically (following tradition) write such equations in standard form as
y′ + p(t)y = g(t) (**)

For example, near the earth and in the presence of air resistance, the velocity v of a falling
object obeys the differential equation v′ = g − kv, where g and k are (positive) constants.
There is a general technique for solving such equations, by trying to think of the left-hand
side of the equation as the derivative of a single function. In form it looks like the derivative
of a product, and by introducing an integrating factor µ(t), we can actually arrange this.
Writing

(µ(t)y)′ = µ(t)(y′ + p(t)y)) = µ(t)g(t)
we find that (where exp(blah) means e raised to the power ‘blah’)

µ(t) = exp(
∫

p(t) dt)
and so

µ(t)y =
∫

µ(t)g(t) dt =
∫

(exp(
∫

p(t) dt)) g(t) dt +c
which we can then solve for y.
Putting this all together, we find that the solutions to (**) are given by

y = e−
∫

p(t) dt(
∫

e
∫

p(t) dtg(t) dt + c)
For example, the differential equation ty′ − y = t2 + 1 , after being rewritten in
standard form as y′ − (1/t)y = t + (1/t), has homogeneous solution

yh = exp(
∫

1/t dt) = exp(ln t) = t

so we have
y = t(

∫
1 + 1/t2 dt) = t(t − (1/t) + c)

and so our solutions are y = t2 − 1 + ct, where c is a constant.
But what is c ? Or solution is actually a family of solutions; a particular solution (i.e., a
particular value for c) can be found from an initial value y(t0) =y0. For example, if we
wished to solve the initial value problem

ty′ − y = t2 + 1 , y(2) = 5
we can plug t = 2 and y = 5 into our general solution to obtain c = 1 .

Chapter 3: Mathematical Models
Compartmental Analysis

In many instances, the rate of change of a quantity can be best analysed by treating the
factors that make the quantity go up separately from those that make it go down; each can
often be easily understood in isolation. We can then build a differential equation modeling
the behavior of the quantity y = y(t) as

y′ = (things that make y go up) − (things that make y go down)
As a basic example, we have mixing problems. The basic setup has a solution of a known
concentration mixing at a known rate with a solution in a vat, while the mixed solution is
poured off at a known rate. The problem is to find the function which gives concentration
in the vat at time t. It turns out that it is much easier to find a differential equation which
describes the amount of solute (e.g., salt) in the solution (e.g., water), rather than the
concentration.
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If the concentration pouring in is A, at a rate of N , while the solution is pouring out at rate
M with concentration A(t)= x(t)/V (t), then if the initial volume is V0, we can compute
V (t) = V0 +(N −M)t . The change in the amount x(t) of solute can be computed as (rate
falling in)−(rate falling out), which is

x′ = AN − A(t)M = AN − x

V0 + (N − M)t
M

This is a linear equation, and so we can solve it using our techniques above.
We can also deal with a succession of mixing problems, the output of one becoming the
input of the next, by treating them one at a time; the only change in the setup above
is that the incoming concentration for the next vat (to solve for xi+1(t)) would be the
concentration xi(t)/Vi(t) found by solving the equation for the previous vat.
Another situation where this kind of analysis proves successful is in modeling population
growth. The idea is that if y is the population at time t, then

y′ = (birth rate) − (death rate)
Typically, the birth rate is proportional to the population, i.e. is ry, while the death rate
is either modeled as being proportional to the population (Malthusian model) or is a sum
(logistic model); one part is proportional to the population (death by “natural causes”),
the other is proportional to the square of the population (this typically represents contact
between individuals,arising from competition for food, overcrowding, etc.), i.e., is ky2 .
Put together, and combining the two terms proportional to population, we obtain

y′ = ry for the Malthusian model, and
y′ = ry − ky2 for the logistic model

Both equations are separable, and so we can use phase lines to understand their long-
term behavior, as well as finding explicit solutions (using partial fractions, for the logistic
equation).
Heating and Cooling

Newton’s Law of Cooling: This states that the rate of change of the temperature T (t) of
an object is proportional to the difference between its temperature and the ambient tem-
perature of the air around it. The constant of proportionality depends upon the particular
object (and the medium, e.g., air or water) it is in. In other words,

T ′ = k(A − T )
Since a cold object will warm up, and a warm object will cool down, this means that the
constant k should be positive. Writing the equation as

T ′ + kT = kA

we find the solution (after solving the IVP)
T (t) = A + (T (0) − A)e−kt

Typically, k is not given, but can be determined by knowing the temperature at some other
time t1, by plugging into the equation above and solving for k.
Newtonian Mechanics

If we wish to model the motion of an object, whose position at time t is given by x(t),
then (setting v(t) = x′(t)) Newton’s Second Law of Motion tells us that
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mv′ = the sum of the individual forces acting on the object
When we can understand these forces, in terms of t and v, we can build a first order
differential equation, which we can then bring our techniques to bear to solve. Typical
forces include:
gravity: Fg = mg or Fg = −mg, depending upon whether we think of the positive direction
as down (giving +) or up (giving −). g = 9.8 m/sec2 = 32 ft/sec2 (approximately)
air resisitance: this is typically modeled either as Fa = −kv (for smallish velocities) or
Fa = −kv2 (for large velocities). It always acts to push our velocity towards 0, hence the
− sign.
external force: Fe = g(t) ; this represents a force that “follows along” the object and tries
to push it in a direction that is “pre-programmed” in time.
With these sorts of forces, we get a general equation

mv′ = ±mg − kv + g(t)
which we can solve by the methods we have developed. For example, ignoring external
forces and assume the positive direction is “down”, we have the initial value problem

mv′ = mg − kv v(0) = v0

with solution
v(t) =

mg

k
+ (v0 − mg

k
)e−

kt
m

As t → ∞, v(t) → mg

k
= the terminal velocity.

Chapter 4: Linear Second Order Equations
Linear Differential Operators
Basic object of study: second order linear differential equations. Standard form:

y′′ + p(t)y′ + q(t)y = g(t) (*)
Initial value problem: we need two initial conditions

y(t0) = y0 and y′(t0) = y′
0

Basic existence and uniqueness: if p(t), q(t), and g(t) are continuous on an interval around
t0, then any initial value problem has a unique solution on that interval. Our Basic goal:
find the solution!
(*) is called homogeneous if g(t) = 0 ; otherwise it is inhomogeneous. (*) is an equation
with constant coefficients if p(t) and q(t) are constants.
Our main new technique for exploring these equations will be operator notation. We write
L[y] = y′′ + p(t)y′ + q(t)y (this is called a linear operator), then a solution to (*) is a
function y with L[y] = g(t). Some familiar linear operators: Dn[y] = y(n) ( the n-th
derivative operator). The operator is called linear because

L[cy] = cL[y] and L[y1 + y2] = L[y1] + L[y2]
For a linear differential equation, L[c1y1 +c2y2] = c1L[y1]+c2L[y2], and so if y1 and y2 are
both solutions to L[y] = 0 then so is c1y1 + c2y2 . c1y1 + c2y2 is called a linear combination
of y1 and y2. This fact is called the Principle of Superposition: more generally, for a linear
operator, if L[y1] = g1(t) and L[y2] = g2(t), then L[y1 + y2] = g1(t) + g2(t) .
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Fundamental Solutions of Homogeneous Equations

Basic idea: with (the right) two solutions y1, y2 to a homogeneous linear equation
y′′ + p(t)y′ + q(t)y = 0 (***)

we can solve any initial value problem, by choosing the right linear combination: we need
to solve

c1y1(t0) + c2y2(t0) = y0 and c1y
′
1(t0) + c2y

′
2(t0) = y′

0

for the constants c1 and c2; then y = c1y1 + c2y2 is our solution. This we can do directly,
as a pair of linear equations, by solving one equation for one of the constants, and plugging
into the other equation, or we can use the formulas

c1 =

∣∣∣∣ y0 y2(t0)
y′
0 y′

2(t0)

∣∣∣∣∣∣∣∣ y1(t0) y2(t0)
y′
1(t0) y′

2(t0)

∣∣∣∣
and c2 =

∣∣∣∣ y1(t0) y0

y′
1(t0) y′

0

∣∣∣∣∣∣∣∣ y1(t0) y2(t0)
y′
1(t0) y′

2(t0)

∣∣∣∣
where

∣∣∣∣ a b
c d

∣∣∣∣ = ad−bc . This makes it clear that a solution exists (i.e., we have the ‘right’

pair of functions), provided that the quantity

W = W (y1, y2)(t0) =
∣∣∣∣ y1(t0) y2(t0)
y′
1(t0) y′

2(t0)

∣∣∣∣ �= 0

W is called the Wronskian (determinant) of y1 and y2 at t0 . The Wronskian is closely
related to the concept of linear independence of a collection y1, . . . , yn of functions; such a
collection is linearly independent if the only linear combination c1y1 + · · ·+ cnyn which is
equal to the 0 function is the one with c1 = · · · = cn = 0 .
Two functions y1 and y2 are linearly independent if their Wronksian is non-zero at some
point; for a pair of solutions to (***), it turns out that the Wronskian is always equal to
a constant multiple of

e
∫

p(t) dt

and so is either always 0 or never 0. We call a pair of linearly independent solutions to
(***) a pair of fundamental solutions. By our above discussion, we can solve any initial
value problem for (***) as a linear combination of fundamental solutions y1 and y2. By
our existence and uniqueness result, this gives us:
If y1 and y2 are a fundamental set of solutions to the differential equation (***), then any
solution to (***) can be expressed as a linear combination c1y1 + c2y2 of y1 and y2.
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