
A guide to solving linear systems
The key to solving linear systems is to find eigenvalues and eigenvectors for the matrix.

If A is a square matrix, then we say λ is an eigenvalue for A if there is a non-zero vector ~v
so that A~v = λ~v. We call ~v an eigenvector for A and λ.
How to find eigenvalues. Rewriting the equation above, (A − λI)~v = ~0, where I is

the identity matrix. For any matrix B, B~v = ~0 for a non-zero vector ~v if and only if the
determinant of B is zero (this is the key fact about matrices mentioned earlier).

Find eigenvalues for A by solving det(A− λI) = 0 for λ.

How to find eigenvectors. Given an eigenvalue for A, say λ0, then we can plug in λ0

into the matrix A− λ0I, and this is now a matrix of numbers.

Find eigenvectors for A and λ0 by solving (A− λ0I)~v = 0 for non-zero ~v.

There will be more than one solution, so pick a simple solution.

Solutions to linear systems. The solutions can have one of three forms, depending on
the eigenvalues of the matrix. The three possibilities are 1) distinct real roots, 2) complex
roots, and 3) a repeated real root.

For 1), if the eigenvalues are λ1 and λ2, with eigenvectors ~v1 and ~v2, then the solutions
are

~Y1(t) = ~v1e
λ1t, ~Y2(t) = ~v2e

λ2t.

For 2), if the eigenvalues are a + bi and a − bi, then the eigenvectors are going to be
complex numbers, say

~v1 =

[
α + iβ
γ + iδ

]
.

Then, by taking real and imaginary parts, the solutions are

~Y1(t) = eat
[
α cos(bt)− β sin(bt)
γ cos(bt)− δ sin(bt)

]
~Y2(t) = eat

[
β cos(bt) + α sin(bt)
δ cos(bt) + γ sin(bt)

]
.

If you want to write the solutions in terms of complex numbers, you can always write
~Y1(t) = ~v1e

(a+bi)t, ~Y2(t) = ~v2e
(a−bi)t but the first form of the solution is better, as it

involves only real numbers.
For 3), if the eigenvalue is λ1, with an eigenvector ~v1, then the solutions are

~Y1(t) = ~v1e
λ1t, ~Y2(t) = (~v1t+ ~v2) eλ1t,

where ~v2 is a solution to (A− λ1I)~v2 = ~v1.

Examples. Next, we carry out this process for three examples, to show how it works in
each case. Consider the system

dx

dt
= 2x+ 2y,

dy

dt
= 3x+ y.

To write this as a matrix, let ~Y (t) =

[
x(t)
y(t)

]
and A =

[
2 2
3 1

]
. Then we have

d~Y

dt
= A~Y .
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Eigenvalues. We solve

∣∣∣∣
2− λ 2

3 1− λ

∣∣∣∣ = 0, which is λ2 − 3λ− 4 = 0. The roots are λ = −1

and λ = 4.

Eigenvectors. First we find the eigenvector for λ = 4. Solve

[
2− 4 2

3 1− 4

] [
a
b

]
=

[
0
0

]
.

The two equations are −2a + 2b = 0 and 3a − 3b = 0. It will always be true that
the two equations are multiplies of each other. If this does not happen, then
you’ve made a mistake somewhere. Pick a simple solution, like a = 1 and b = 1. So

the eigenvector for λ = 4 is ~v1 =

[
1
1

]
.

Next, we find the eigenvector for λ = −1. Solve

[
2− (−1) 2

3 1− (−1)

] [
a
b

]
=

[
0
0

]
.

Here, the two equations are 3a + 2b = 0 and 3a + 2b = 0, so the equations are not just
multiples, but are identical. A simple solution is a = −2 and b = 3. So the eigenvector for

λ = −1 is ~v2 =

[
−2
3

]
.

Thus, the general solution is ~Y (t) = C1

[
1
1

]
e4t +C2

[
−2
3

]
e−t. In terms of the component

functions, x(t) and y(t), we have x(t) = C1e
4t − 2C2e

−t and y(t) = −C1e
4t + 3C2e

−t.

Phase plane. The phase plane of this system is
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Notice the line that is multiples of the vector

[
1
1

]
, that is, the line y = x. On this line,

solutions move straight out, away from the origin. This is because the eigenvector gives us
a straight line of solutions through the origin on the phase plane. Moreover, because the
associated eigenvalue is positive, the solutions move away from the origin. (See the picture
on the last page.)
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The other eigenvector,

[
−2
3

]
, also gives us a straight line of solutions through the origin,

now on the line y = −3x/2. Because the eigenvalue is negative, the solutions more towards
the origin on this line.

If the two eigenvalues are positive and distinct, then solutions move away from the origin
along both straightline solutions. If the two eigenvalues are negative and distinct, then
solutions move towards the origin along both straightline solutions. (See the pictures at the
end of the handout.)

Next, we consider a system which will turn out to have complex eigenvalues,

dx

dt
= x+ 5y,

dy

dt
= −x+ 3y.

It has the form
d~Y

dt
= A~Y . with A =

[
1 5
−1 3

]
and ~Y (t) in the last example.

Eigenvalues. We solve

∣∣∣∣
1− λ 5
−1 3− λ

∣∣∣∣ = 0, which is λ2−4λ+8 = 0. The roots are λ = 2±2i.

Eigenvectors. To find this for λ = 2− 2i, solve

[
1− (2− 2i) 5
−1 3− (2− 2i)

] [
a
b

]
=

[
0
0

]
.

The two equations are (−1 + 2i)a+ 5b = 0 and −a+ (1 + 2i)b = 0. These equations are still
multiples of each other (multiply the first by (1 + 2i)/5 to get the second) but it is maybe
more trouble than it’s worth to check this when the equations with complex numbers.

To pick a solution we set a equal to the coefficient of b in the equation and b equal to
minus the coefficient of a. Thus, a = 5 and b = 1− 2i is a solution. So the eigenvector for

λ = 2− 2i is

[
5

1− 2i

]
.

From this one eigenvector, we can find two solutions, using the formula given on the first
page. The solutions are

~Y1(t) = e−2t

[
5 cos(2t)

cos(2t) + 2 sin(2t)

]
~Y2(t) = e−2t

[
5 sin(2t)

−2 cos(2t) + sin(2t)

]
.

Notice that we do not need to find the eigenvector for the second complex eigen-
value. The general solution of the system is

~Y (t) = C1e
−2t

[
5 cos(2t)

cos(2t) + 2 sin(2t)

]
+ C2e

−2t

[
5 sin(2t)

−2 cos(2t) + sin(2t)

]
.
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Phase plane. The phase plane of this system is
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Because the eigenvalues are complex instead of real, we get a spiral instead of straight lines
of solutions. The real part of the eigenvalue tells us whether the solutions spiral inwards
toward the origin or spiral outwards away from the origin. If the real part is negative,
they spiral inward; if positive, they spiral outward; if zero, then the solutions loop, staying
roughly the same distance from the origin. (Again, see the last page of the handout.)

For the final example, we consider a solution with a repeated eigenvalue,

dx

dt
= x+ y,

dy

dt
= −x+ 3y.

It has the form
d~Y

dt
= A~Y . with A =

[
1 1
−1 3

]
and ~Y (t) in the last example.

Eigenvalues. We solve

∣∣∣∣
1− λ 1
−1 3− λ

∣∣∣∣ = 0, which is λ2 − 4λ + 4 = 0. The roots λ = 2,

repeated.

Eigenvectors. First we find the eigenvector for λ = 2. Solve

[
1− 2 1
−1 3− 2

] [
a
b

]
=

[
0
0

]
.

The two equations are −a+ b = 0 and −a+ b = 0, so we happen to have exactly the same

equation. Pick a solution a = 1 and b = 1. So the eigenvector for λ = 2 is ~v1 =

[
1
1

]
and the

first solution in the fundamental set is

~Y1(t) =

[
1
1

]
e2t.

There is no second eigenvalue, so we have to find a second linearly independent solution
by finding another vector. We solve the system the system given on the first page, namely

[
1− 2 1
−1 3− 2

] [
a
b

]
=

[
1
1

]
.
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This system is the equations −a + b = 1 and −a + b = 1. A simple solution is a = 0 and
b = 1. According to the forumla on the first page, the second solution is

~Y2(t) =

([
1
1

]
t+

[
0
1

])
e2t.

The general solution is

~Y (t) = C1

[
1
1

]
e2t + C2

([
1
1

]
t+

[
0
1

])
e2t.

Phase plane. The phase plane of this system is
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Because we have only one eigenvalue and one eigenvector, we get a single straight-line

solution; for this system, on the line y = x, which are multiples of the vector

[
1
1

]
. Notice

that the system has a bit of spiral to it.

Exercises. Repeat the analysis done in the examples for the following matrices.

[
1 1
1 −1

]
,

[
1 1
4 −2

]
,

[
0 1
−1 0

]
,

[
3 −4
1 −1

]
,

[
−3 4
−2 3

]
,

[
4 −2
5 2

]
,

[
5 4
−1 1

]

To get maple to plot the phase plane of a DE, you can do the following
with(DEtools);

sys := {diff(x(t),t) =1*x(t)+1*y(t), diff(y(t),t)=-x(t)+3*y(t)};
DEplot(sys, [x(t),y(t)], t=-10..10, y=-5..5,x=-5..5);


