
Math 221

Topics since the second exam

Laplace Transforms.

There is a whole different set of techniques for solving n-th order linear equations, which are
based on the Laplace transform of a function. For a function f(t), it’s Laplace transform
is

L{f} = L{f}(s) =
∫ ∞

0

e−stf(t) dt

The domain of L{f} is all values of s where the improper integral converges. For most basic
functions f , L{f} can be computed by integrating by parts. A list of such transforms can
be found on the handout from class. The most important property of the Laplace transform
is that it turns differentiation into multiplication by s. that is:

L{f ′}(s) = sL{f}(s) − f(0)
more generally, for the n-th derivative:

L{f (n)}(s) = snL{f}(s) − sn−1f(0) − sn−2f ′(0) − · · · − f (n−1)(0)
The Laplace transform is a linear operator in the same sense that we have used the term
before: for any functions f and g, and any constants a and b,

L{af + bg} = aL{f} + bL{g}
(since integration is a linear operator). We can therefore use Laplace transforms to solve
linear (inhomogeneous) equations (with constant coefficients), by applying L to both sides
of the equation:

ay′′ + by′ + cy = g(t)
becomes

(as2 + bs + c)L{y} − asy(0) − ay′(0) − by(0) = L{g}, i.e.

L{y} =
L{g}(s) + asy(0) + ay′(0) + by(0)

as2 + bs + c

So to solve our original equation, we need to find a function y whose Laplace transform
is this function on the right. It turns out there is a formula (involving an integral) for the
inverse Laplace transform L−1, which in principle will solve our problem, but the formula
is too complicated to use in practice. Instead, we will develop techniques for recognizing
functions as linear combinations of the functions appearing as the right-hand sides of the
formulas in our Laplace transform tables. Then the function y we want is the corresponding
combination of the functions on the left-hand sides of the formulas, because the Laplace
transform is linear! Note that this approach incorporates the initial value data y(0), y′(0)
into the solution; it is naturally suited to solving initial value problems.
Our basic technique for finding solutions is partial fractions: we will content ourselves with
a simplified form of it, sufficient for solving second order equations. The basic idea is that
we need to find the inverse Laplace transform of a function having a quadratic polynomial
as2 +bs+c in its denomenator. Partial fractions tells us that, if we can factor as2 +bs+c
= a(x − r1)(x − r2), where r1 �= r2, then any function
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ms + n

as2 + bs + c
=

A

s − r1
+

B

s − r2

for appropriate constants A and B. We can find the constants by writing

A

s − r1
+

B

s − r2
=

A(s − r2) + B(s − r1)
(s − r1)(s − r2)

=
Aa(s − r2) + Ba(s − r1)

as2 + bs + c

so we must have ms + n = Aa(s − r2) + Ba(s − r1); setting the coefficients of the two
linear functions equal to one another, we can solve for A and B. We can therefore find
the inverse Laplace transform of (ms + n)/(as2 + bs + c) as a combination of the inverse
transforms of (s − r1)−1 and (s − r2)−1, which can be found on the tables!
If r1 = r2, then we instead write

ms + n

as2 + bs + c
=

A

s − r1
+

B

(s − r1)2
=

a(A(s − r1) + B)
a(s − r1)2

=
a(A(s − r1) + B)

as2 + bs + c

anbd solve for A and B as before.
Finally, if we cannot factor as2 + bs + c (i.e, it has complex roots), we can then write it as
(a times) a sum of squares, by completing the square:

as2 + bs + c = a((s − α)2 + β2), so
ms + n

as2 + bs + c
=

Aβ

a((s − α)2 + β2)
+

B(s − α)
a((s − α)2 + β2)

=

A

a

β

(s − α)2 + β2
+

B

a

s − α

(s − α)2 + β2

for appropriate constants A and B (which we solve for by equating the numerators), and

so it is a linear combination of
β

(s − α)2 + β2
and

(s − α)
(s − α)2 + β2

, both of which appear

on our tables!

Handling higher degree polynomials in the denomenator is similar; if all roots are real and
distinct, we write our quotient as a linear combination of the functions (s−ri)−1, combine
into a single fraction, and set the numerators equal; if we have repeated roots, we include
terms in the sum with successively higher powers (s − ri)−k (where k runs from 1 to the
multiplicity of the root). Complex roots are handled by inserting the term we dealt with
above into the sum.

Discontinuous external force.

One area in which Laplace transforms provide a better framework for working out solutions
than our ”auxiliary equation” approach is when we are trying to solve an equation

ay′′ + by′ + cy = g(t)
where g(t) is discontinuous, or defined in pieces over different time intervals. The model
for a discontinuous function is the step function u(t) :

u(t) =
{

1 if t ≥ 0
0 if t < 0

More generally, the function u(t − a) has
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u(t − a) =
{

1 if t ≥ a

0 if t < a

So, for example, the function which is t for 3 ≤ t ≤ 5, and is 0 everywhere else, can be
expressed as g(t) = t(u(t − 3) − u(t − 5)). We can streamline things somewhat by writing
u(t − a) − u(t − b) = χ[a,b](t) = the characteristic function of the interval [a, b] ; it is 1
between a and b, and 0 everywhere else. So, for example, the piecewise-defined function

f(t) =




t if 0 ≤ t ≤ 2
5 − t if 2 < t < 5
3 if t ≥ 5

can be expressed as

f(t) = tχ[0,2](t) + (5 − t)χ[2,5](t) + 3χ[5,∞)(t)
= t(u(t) − u(t − 2)) + (5 − t)(u(t − 2) − u(t − 5)) + 3u(t − 5)

We can find the Laplace transform of such a function by finding the transform of functions
of the form f(t)u(t − a), which we can do directly from the integral, by making the
substitution x = t − a:
L{f(t)u(t − a)} =

∫ ∞
0

e−stf(t)u(t − a) dt =
∫ ∞

a
e−stf(t) dt =

∫ ∞
0

e−s(t+a)f(t + a) dt =
e−as

∫ ∞
0

e−stf(t + a) dt = e−asL{f(t + a)} .

Turning this around, we find that the inverse Laplace transform of the function e−asL{f}(s)
is f(t−a)u(t−a). So if we can find the inverse transform of a function F (s) (in our tables),
this tells us how to find the inverse transform of e−asF (s). This is turn gives us a method
for solving any initial value problem, in principle, whose inhomogeneous term f(t) has
finitely many values where it is discontinuous, by writing f(t) as a sum of functions of the
form fi(t)u(t − ai), as above.

For example, to find the solution to the differential equation

y′′ + 2y′ + 5y = g(t) , y(0) = 2 , y′(0) = 1 , where g(t) is the function which is 5
for 2 ≤ t ≤ 4 and 0 otherwise, we would (after taking Laplace transforms and simplifying)
need to find the inverse Laplace transform of the function

F (s) =
2s + 5

s2 + 2s + 5
+

5(e−2s − e−4s)
s(s2 + 2s + 5)

Applying our partial fractions techniques, we find that

F (s) = 2
s + 1

(s + 1)2 + 22
+

3
2

2
(s + 1)2 + 22

+
(

1
s
− s + 1

(s + 1)2 + 22

1
2
− 2

(s + 1)2 + 22

)
e−2s

−
(

1
s
− s + 1

(s + 1)2 + 22
− 1

2
2

(s + 1)2 + 22

)
e−4s

We can apply L−1 to each term, using L−1{e−asL{f}(s)} = f(t − a)u(t − a) for the last
6 terms (since after removing e−2s and e−4s the remainder of each term is in our tables).
For example,

L−1{ s + 1
(s + 1)2 + 22

e−2s} = e−(t−2) cos(2(t − 2))u(t − 2) . The final solution, as the

interested reader can work out, is
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y = 2e−t cos(2t) +
3
2
e−t sin(2t)

+
[
1 − e−(t−2) cos(2(t − 2)) − 1

2
e−(t−2) sin(2(t − 2))

]
u(t − 2)

−
[
1 − e−(t−4) cos(2(t − 4)) − 1

2
e−(t−4) sin(2(t − 4))

]
u(t − 4)

The Dirac delta function and abrupt changes in direction

One final type of forcing term to which the method of Laplace transforms is especially well
adapted is an impulsive force, where the velocity of the object instantaneously changes.
We can model this as an external force F (t) which applies a very large force over a very
short time, so the the impulse it imparts over the time interval (−ε, ε), given by∫ ε

−ε

F (t) dt = 1

This requires F (t) to be very large! If we imagine taking a limit as the length of the
interval goes to zero, we get the Dirac delta function:

δ(t) =
{

0 if t �= 0
∞ if t = 0

with
∫ ε

−ε

δ(t) dt = 1 for every ε .

One consequence of the integral equality is that, for any function f(t) ,∫ ∞

−∞
f(t)δ(t) dt = f(0)

The only problem is that δ(t) isn’t a function! (∞ can’t be the “value” at a point...) What
it is is a “generalized function” (or distribution). We won’t go into further details, but with
the proper framework we can work with it as we do ordinary functions. Which is good,
because a force of δ(t) is precisely the kind of function we need to model a hammer blow; it
essentially instantly changes the motion of an object. From the pointof view of an impulse
imparted to the object, integrating a force integrated my′′, which gives my′(b) − my′(a)
, which is a change in momentum. So a Dirac delta, which represents an instantaneous
impulse, represents an instant change of momentum, and so an instant jump in velocity.
But computing the Laplace transform of δ(t), or rather δ(t−a) (which represents a hammer
blow at time a) is straighforward.

L{δ(t − a)} =
∫ ∞

0

e−stδ(t − a) dt =
∫ ∞

0

e−s(u+a)δ(u) du =
∫ ∞

−∞
e−s(u+a)δ(u) du = e−as

where the second equality uses a u-substitution. With this in hand, we can solve IVP’s
having a forcing term that includes an impulsive ( = delta function) forcing term, using
the same approach we have with our other IVP’s. For example, to solve

y′′ + y = 3χ[2,4] − 2δ(t − 5) y(0) = 2 , y′(0) = 1
(i.e., a rocket firing for 2 ≤ t ≤ 4 , followed by an (upward) hammer blow at t = 5), we
solve

(s2 + 1)L{y} = 3
(

e−2s

s
− e−4s

s

)
− 2e−5s

so L{y} = 3
(

e−2s

s(s2 + 1)
− e−4s

s(s2 + 1)

)
− 2

e−5s

s2 + 1
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so y = 3u(t − 2)f(t − 2) − 3u(t − 4)f(t − 4) − 2u(t − 5)g(t − 5) , where

f(t) = L−1

{
1

s(s2 + 1)

}
and g(t) = L−1

{
1

s2 + 1

}
= sin t. We can de-

termine f by partial fractions.

And, just because it managed to be left off of the Exam 2 topics sheet:

Applications: spring - mass problems

Basic setup: an object with mass m sits on a track and is attached to an immovable wall
by a spring. At rest, the mass sits at a point in the track which we will call 0. The mass
is then displaced from this equilibrium position and released (with some initial velocity).
The position at time t of the object is x(t) .
Newton: mu′′ = sum of the forces acting on the object. These include:

the spring: Fs = −kx (Hooke’s Law; k > 0)
friction: Ff = −bx′ (b ≥ 0
a possible external force: Fe = f(t)

Putting them all together, we get mx′′ = −kx − bx′ + f(t), i.e.,
mx′′ + bx′ + kx = f(t)

and this is an equation we know how to solve!
Some special cases:

No friction (b = 0) , i.e., undamped; no external force, i.e., unforced). Solutions are
u = c1 cos(ω0t) + c2 sin(ω0t) = C cos(ω0t − δ)

where ω0 =
√

k/m = the natural frequency of the system, C = amplitude of the vibration,
δ (= ‘delay’) = phase angle, where

C =
√

(c2
1 + c2

2), tan(δ) = c2/c1

[[you are not responsible for these formulas; they are included FYI only.]]

T = 2π/ω0 = period of the vibration. Note that a stiffer spring (= larger k) gives higher
frequency, shorter period. Larger m gives the opposite.

Damped unforced vibrations: solve the auxiliary equation, solutions have b2 − 4km =
discriminant inside of the square root, and so the solutions depend on the sign of the
discriminant.

b2 > 4km (overdamped); fundamental solutions are er1t, er2t, r1, r2 < 0 (roots are
negative because m, b, k > 0)
b2 = 4km (critically damped); fundamental solutions are ert, tert, r < 0
b2 < 4km (underdamped); fundamental solutions are ert cos(ωt), ert sin(ωt), r < 0 ,
ω =

√
ω2

0 − (b/2m)2

In each case, solutions tend to 0 as t goes to ∞. In first two cases, the solution has at
most one local max or min; in the third, it continues to oscillate forever.

Forced vibrations: Focus on periodic forcing term: f(t) = F0 cos(ωt) .
Damped case: if we include friction (b �= 0), then the solution turns out to be
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x = homog. soln. +C sin(ωt − δ)
But since b > 0, the homogeneous solutions will tend to 0 as t → ∞; they are called the
transient solution. (Basically, they just allow us to solve any initial value problem. We can
then conclude that any energy given to the system is dissipated over time; leaving only the
energy imparted by the forcing term to drive the system along.) The other term is called
the forced response, or steady-state solution.
Undamped: when ω = ω0, our forcing term is a solution to the homogeneous equation, so
the general solution, instead, is

x = C1 sin(ω0t − δ1) + C2t sin(ω0t − δ2)
In this case, as t goes to ∞, the amplitude of the second oscillation goes to ∞; the solution,
essentially, resonates with the forcing term. (Basically, you are ‘feeding’ the system at it’s
natural frequency.) This illustrates the phenomenon of resonance.
[[And a little extra, FYI...]]

If ω �= ω0, then (using undetermined coefficients) the solution is

x = C cos(ω0t − δ) +
F0

m(ω2
0 − ω2)

cos(ωt)

This is the sum of two vibrations with different frequencies.
In the special case x(0) = 0, x′(0) = 0 (starting at rest), we can further simplify:

x =
2F0

m(ω2
0 − ω2)

sin(
ω0 − ω

2
t) sin(

ω0 + ω

2
t)

When ω is close to ω0, this illustrates the concept of beats; we have a high frequency
vibration (the second sine) with amplitude a low frequency vibration (the first sine). the
mass essentially vibrates rapidly between to sine curves.
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