
Math 221

Topics since the third exam

Chapter 9: Non-linear Systems of equations

x1: Typical Phase Portraits

The structure of the solutions to a linear, constant coeÆcient, system of di�erential equa-
tions

u0 = Au

is, essentially, completely determined by the eigenvalues of the associated matrix A. We
call the origin (0,0) a critical point for the system, because it is the (typically, only) place
where u0=0 . We describe the critical point (0,0) by the behavior, or phase portrait, of the
solutions around it. A table showing the nine typical pictures appears on the last page of
these notes. The only portrait missing there is the case that one of the eigenvalues is zero.
In this case, any multiple of the eigenvector with eigenvalue 0 is a critical point. We call
this situation degenerate.
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Everything about these portraits can be determined by knowing the eigenvalues and their
eigenvectors, except, in the case of spirals and centers, the direction of the rotation. This
can, however, be determined by evaluating Au at a point like (1,0), to determine if the
trajectories are going up or going down at that point.
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(x2,3,4,5: Autonomous Systems

Our determination of the above phase portraits can help us to understand many non-linear

systems, particularly autonomous systems. These systems, just as in our one-variable
situation, have right-hand sides that do not involve t, i.e.

x0 = f(x; y) y0 = g(x; y)

With such a system, we can talk about its equilibrium solutions, i.e., values of x and y where
x0 = y0 = 0. These are determined by �nding simultaneous solutions to the equations

f(x; y) = 0 g(x; y) = 0

Unlike with linear systems, there is usually more than one critical point for a non-linear
system.

The basic idea behind our analysis of non-linear systems is that, near a critical point, the
solutions to a non-linear system look like the solutions to some linear system, in a sense
we will soon make precise. The idea is to linearize the system at the critical point, by
replacing f and g by their linear approximations. At a critical point (x0; y0), the linear
approximation to f is

f(x; y) � f(x0; y0) + fx(x0; y0)[x� x0] + fy(x0; y0)[y � y0] = fx(x0; y0)[x� x0] + fy(x0; y0)[y � y0]

(since we are at a critical point); g is similar. This allows us to approximate our system
of equations by

x0 = fx(x0; y0)[x� x0] + fy(x0; y0)[y � y0] y0 = gx(x0; y0)[x� x0] + gy(x0; y0)[y � y0]

or, if we make the substitutions u1 = x � x0, u2 = y � y0, a = fx(x0; y0), b = fy(x0; y0),
c = gx(x0; y0), d = gy(x0; y0), we get

u0

1
= au1 + bu2 u0

2
= cu1 + du2

But this is precisely the kind of system of equations we know how to solve! The picture
of the trajectories looks like one of our nine (or ten) phase portraits. The basic idea is
that the phase portrait around a critical point of the non-linear system (usually) looks
exactly like the portrait of its associated linearized system, at least in basic structure. In
particular we can determined the stability of the critical point from these portraits, i.e.,
decide whether or not a solution that starts close to a critical point stays close to it (i.e.,
it is a sink, or source). This can be done for every critical point of the nonlinear system,
one at a time.
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In some situations, however, the phase portrait for the nonlinear system can be di�erent
from the linearized one. But this can only happen in the `atypical' cases, where we have a
center or an improper node. This is because our linearized system is only an approximation;
and a center, for example, is a good approximation to a really, really tight spiral! The
mathematical reason is that if you `wiggle' the coeÆcients in a matrix a little bit, then if
you started with distinct real eignevalues, or complex eigenvalues with non-zero real part,
then your wiggled matrix will still have the same kind of solutions. But repeated real
eigenvalues might change into distinct real ones (although the stability of the critical point
will remain the same, since the sign of the eigenvalues won't change. For the same reason,
eigenvalues with zero real part might become ones with positive or negative real parts,
so the nonlinear system might have a spiral source, spiral sink, or center critical point,
instead of the center that the linearized system has.

Put more succinctly, if the linearized system has a node source, node sink, saddle, spiral
source, or spiral sink, then so does the nonlinear system. The stability of the critical point
therefore remains unchanged. But:

If the linear system has a center, the nonlinear one could have a spiral source, spiral sink,
or center. Stability cannot be determined from the linearized system.

If the linear system has repeated eigenvalues (other than 0), then the nonlinear system
might have a node, star point, or improper node. However, the stability will be the same
as for the linearized system, which depends one whether the repeated eigenvalue is positive
or negative.
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complex eigenvalues, real part negative

spiral sink
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complex eigenvalues, real part positive

spiral source
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complex eigenvalues, real part zero

center
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distinct real eigenvalues, different signs

saddle point
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distinct real eigenvalues, both negative

node sink
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distinct real roots, both positive

node source
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repeated eigenvalues, positive

improper node, source
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repeated eigenvalues, negative

improper node, sink

–4

–2

0

2

4

y

–4 –2 2 4x

repeated eigenvalues, diagonal matrix

star point
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