
Math 221

Topics for �rst exam

Chapter 1: Introduction

x1: The types of di�erential equations
A di�erential equation is an equation involoving an (unknown) function y and some of
its derivatives. The basic goal is to solve the equation, i.e., to determine which function
or functions satisfy the equation. Di�erential equations come in several types, and our
techniques for solving them will di�er depending on the type.

Ordinary vs. partial: If y is a function of only one variable t, then our di�erential equation
will involve only derivatives w.r.t. t, and we will call the equation an it ordinary di�erential
equation. If y is a function of more than one variable, then our di�erential equation will
involve partial derivatives, and we will call it a partial di�erential equation. We will deal
almost exclusively with ordinary di�erential equations in this class.

Systems: Sometimes the rates of change of several functions are inter-related, as with the
populations of a predator y(t) and its prey x(t), where x0 = ax� �xy and y0 = 
xy� cy .
We call this a system of di�erential equations, and its solution would involve �nding both
x(t) and y(t).

Order: Techniques for solving di�erential equations di�er depending upon how many
derivatives of our unknown function are involved. The order of a di�erential equation
is the order of the highest derivative appearing in the equation. The Implicit Function
Theorem tells us that we can rewrite our equation so that it equates the highest order
derivative with an expression involving lower order terms:

y(n) = F (t; y; y0; : : : ; y(n�1)

Linear vs. non-linear: A di�erential equation is linear if it can be written as
a0(t)y

(n) + � � �+ an�1(t)y
0 + an(t)y = g(t)

(i.e., the function F is linear in the variables y; y0; : : : ; y(n�1), although it need not be
linear in t). A di�erential equation is non-linear if it isn't linear! E.g.,

y0 = y2

is non-linear, while
y0 = (sin t)y=(1 + t2)� cos(cos t)

is linear.

In many cases, especially for �rst order di�erential equations, we can `see' what a solution
should look like without actually �nding the solution. For �rst order equations, y0 = f(t; y),
a solution y(t) will satisfy y0(t) = f(t; y(t)), and so we can think of f(t; y) as giving the
slope of the tangent line to the graph of y(t) at the point (t,y(t)). But since the function
f is already known, we can draw small line segments at `every' point of the t-y plane with
slope f(t; y) at the point (t; y); this is called the direction �eld for our di�erential equation.
A solution to our di�erential equation is simply a function whose graph is tangent to each
of these line segments at every point along the graph. Thinking of the direction �eld as
a velocity vector �eld (always pointing to the right), our solution is then the path of a
particle being push along by the velocity vector �eld. From this point of view it is not
hard to believe that every (�rst order ordinary) di�erential equation has a solution, in fact
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many solutions; you just drop a particle in and watch where it goes. Where you drop it
is important (it changes where it goes), which gives rise to the notion of an initial value

problem; we seek to �nd the speci�c solution with the additional initial value y(t0) = y0.

Chapter 2: First order di�erential equations

x1: Linear equations
The most straightforward sort of di�erential equation to solve is the �rst order linear

ordinary di�erential equation

y0 = a(t)y + b(t)
We will typically (following tradition) write such equations as

y0 + p(t)y = g(t)
For example, near the earth and in the presence of air resistance, the velocity v of a falling
object obeys the di�erential equation v0 = g� kv, where g and k are (positive) constants.
There is a general technique for solving such equations, by trying to think of the left-hand
side of the equation as the derivative of a single function. In form it look like the derivative
of a product, and by introducing an integrating factor �(t), we can actually arrange this.
Writing

(�(t)y)0 = �(t)(y0 + p(t)y)) = �(t)g(t)
we �nd that (where exp(blah) means e raised to the power `blah')

�(t) = exp(
R
p(t) dt)

and so
�(t)y =

R
�(t)g(t) dt =

R
(exp(

R
p(t) dt)) g(t) dt +c

which we can then solve for y.

For example, the di�erential equation ty0 � y = t2 + 1 , after being rewritten in
`standard form as y0 � (1=t)y = t+ (1=t), has integrating factor

�(t) = exp(
R
�1=t dt) = exp(� ln t) = 1=t

so we have
(1=t)y =

R
1 + 1=t2 dt = t� (1=t) + c

and so our solutions are y = t2 � 1 + ct, where c is a constant.

But what is c ? Or solution is actually a family of solutions; a particular solution (i.e., a
particular value for c) can be found from an initial value y(t0) =y0. For example, if we
wished to solve the initial value problem

ty0 � y = t2 + 1 , y(2) = 5
we can plug t = 2 and y = 5 into our general solution to obtain c = 1 .

x2: Existence and uniqueness

Our solution above can be expressed more concisely by saying that the solution(s) to
y0 + p(t)y = g(t)

are
y = exp(�

R
p(t) dt)(

R
exp(�

R
p(t) dt)g(t) dt + c)

where c is determined from an initial value. We can check that this actually is a solution
by pluging it into our di�erential equation and seeing that it does in fact solve it.
We can in fact write down the solution to the added initial value problem y(t0) = y0 as

y = exp(�
R t

t0
p(x) dx)(

R t

t0
exp(

R u

t0
p(v) dv)g(u) du + y0)

although in practice this is more trouble than it is worth.
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But this formula does tell us one important thing; for every �rst order linear ordinary
di�erential equation, every initial value problem has a solution (we just wrote it down),
and that solution is unique (because it has to be the one we wrote down). This is the basic
existence and uniqueness theorem.
It actually says more (or less): the solution exists and is unique over any interval where
the integrals we've written down make sense, which amount to any interval where both p(t)
and g(t) are continuous. In other words, a solution to a linear di�erential equation can
blow up or fail to be continuous only at the points of discontinuity of p or g .

x3: Separable equations
There is another class of �rst order equations for which we can readily �nd solutions by
integration; there are the separable equations. A di�erential equation is separable if it can
be written as

y0 = A(t)B(y)
This allows us to `separate the variables' and integrate with respect to dy and dt to get a
solution:

1

B(y)
dy = A(t) dt ; integrate both sides

In the end, our solution looks like F (y) = G(t) + c, so it de�nes y implicitly as a function
of t , rather than explicitly. In some cases we can invert F to get an explicit solution, but
often we cannot.

For example, the separable equation y0 = ty2 , y(1) = 2 has solutionZ
dy

y2
=

R
t dt + c

so solving the integrals we get (�1=y) = (t2=2) + c, or y = �2=(t2 + 2c) ; setting y = 2
when t = 1 gives c = �1 .

x4: Linear versus non-linear equations
There is a similar, but more restrictive, version of existence and uniqueness for non-linear
�rst order di�erential equations:

If y0 = f(t; y) is a di�erential equation with both f and
@f

@y
continuous for a < t < b and

� < y < �, and t0 2 (a; b) and y0 2 (�; �), then for some h > 0, the initial value problem
y0 = f(t; y) , y(t0) = y0

has a unique solution for t 2 (t0 � h; t0 + h) .

With non-linear equations, however, the size of the interval where we can guarantee exis-
tence (and uniqueness) can be very small, and often depends on the choice of initial value!
For example, for the equation

y0 = y2

the righthand side is continuous everywhere (as is the partial derivative), but the interval
we can choose for the solutions y = �1=(t + c) depends on c, which will depend on the
initial condition! And it can never be chosen to be the entire real line.

Failure to satisfy the hypotheses of the result can easily kill both existence and uniqueness.
For example, the equation

y0 = y1=3

has many solutions with the initial condition y(0) = 0, such as y = 0 and y = (2t=3)3=2 .
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x5: Modeling with linear equations

Radioactive decay: Our best model of the spontaneous decay of a radioactive substance
assumes that every atom is as likely to decay at any given time as every other, so the
rate of decay is proportional to the amount present. In other words, if A(t) = the amount
present at time t, then

A0 = kA for some (negative) constant k
Soving this, we �nd that A(t) = Cekt for some constant C. Using the initial value A(0) =
A0, we �nd that A(t) = A0e

kt.
Usually, we are not given k, but are given either the half-life (the time t1=2 with A(t1=2) =
(1=2)A(0)), or, more generally, another data point A(t1) = A1 . Plugging these into the
equation above, we can solve for k .

Mixing problems: The basic setup has a solution of a known concentration mixing at a
known rate with a solution in a vat, while the mixed solution is poured o� at a known
rate. The problem is to �nd the function which gives concentration in the vat at time t. It
turns out that it is much easier to �nd a di�erential equation which describes the amount
of solute (e.g., salt) in the solution (e.g., water), rather than the concentration.

If the concentration pouring in is A, at a rate of N , while the solution is pouring out at rate
M with concentration A(t)= x(t)=V (t), then if the initial volume is V0, we can compute
V (t) = V0+(N �M)t . The change in the amount x(t) of solute can be computed as (rate
falling in)�(rate falling out), which is

x0 = AN � A(t)M = AN �
x

V0 + (N �M)t
M

This is a linear equation, and so we can solve it using our techniques above. The integrating
factor

exp(

Z
M

V0 + (N �M)t
dt)

is a power of the denomenator when N �M 6= 0, and is an exponential when N = M .

Newton's Law of Cooling: This states that the rate of change of the temperature T (t) of
an object is proportional to the di�erence between is temperature and the ambient tem-
perature of the air around it. The constant of proportionality depends upon the particular
object (and the medium, e.g., air or water) it is in. In other words,

T 0 = k(A� T )
Since a cold object will warm up, and a warm object will cool down, this means that the
constant k should be positive. Writing the equation as

T 0 + kT = kA

which has solutions
T (t) = A+ (T (0)�A)e�kt

Typically, k is not given, but can be determined by knowing the temperature at some other
time t0, by plugging into the equation above and solving for k.

x6: Population models and autonomous equations

A di�erential equation is called autonomous if the function f(t; y) is realy a function f(y)
only of the variable y. Such equations are separable, and so can be solved using the
techniques outlined above. But we can learn alot about the solutions to such an equation
simply by understanding the graph of f(y) .
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One feature of the solutions is that we can translate in time and get another solution; if
y(t) is a solution to y0 = f(y), then so is z(t) = y(t + c) for any constant c, as can be
veri�ed by plugging z into the di�erential equation. This can also be veri�ed geometrically,
using the direction �eld approach. For an autonomous equation, the slope of the direction
�eld is always the same along horizontal lines (since it depends on y, not t), and so if we
pick up a solution curve, tangent to the direction �eld, and translate it in the horizontal
direction, it will still be everywhere tangent to the direction �eld, and so is also a solution.
An example of such equations come from population models. The idea is that if y is the
population at time t, then

y0 = (birth rate) � (death rate)
Typically, the birth rate is proportional to the population, i.e. is ry, while the death rate
is proportional to the square of the population (this typically represents contact between
individuals,arising from competition for food, overcrowding, etc.), i.e., is ky2 . In other
words,

y0 = ry � ky2

The key to understanding solutions to such equations y0 = f(y) is to �nd equilibrium

solutions, that is, solutions y = constant =c . Such solutions have derivative 0, and so for
such solutions we must have f(c) = 0. The basic idea is that these equilibrium solutions
tell us a great deal about the behavior of every solution to the di�erential equation.

If the function f(y) is continuous, then between the zeroes of f (i.e., the equilibrium
solutions of the di�erential equation) f has all the same sign, and so for the solutions,
y0 has the same sign, so y(t) is either always increasing or always decreasing. It cannot
cross the equilibrium solutions, since this would violate the uniqueness of solutions to our
di�erential equation. (Here we assume that the derivative of f is also continuous.) If a
solution curve becomes asymptotic to a horizontal line, that line must be an equilibrium
solution, because the tangent lines along our solution must be becoming horizontal, i.e.,
f(y(t)) = f(y) is approaching 0 = f(limit of y(t)).
Therefore, the structure of the solutions is very simple; between consecutive equilibrium
solutions, the solutions increase or decrease monotonically from one equilibrium to the
other. This allows us to classify equilibrium solutions as one of three kinds: stable equilibria,
where nearby solutions all converge back to the equilibrium, unstable equilibria, where
nearby solutions all diverge away from the equilibrium, and semistable equilibria, where
on one side the solutions converge back, and on the other they diverge away.
The easiest way to assemble this data is to plot the roots of f on a number line, and
then determine the sign of f in the intervals in between. Where it is positive, solutions
move to the right (i.e., up), while where it is negative they move left. Marking these as
arrows, a stable equilibrium has arrows on both sides pointing towards it, and an unstable
equilibrium has both arrows pointing away.

Chapter 8: Numerical methods di�erential equations

x1: The tangent line method

Most �rst order equations cannot be solved by the methods we have presented here. For
such equations, the best we can often do is to approximate the solutions, using numerical
techniques. The �rst of these techniques that were studied is the it tangent line method,
also known as Euler's method. The idea is that our di�erential equation y0 = f(t; y) tells
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us the slope of the tangent line at every point of our solution, and the tangent line can be
used to approximate the graph of a function, at least close to the point of tangency. In
other words, for a solution to our di�erential equation,

y(t) � y(t0) + y0(t0)(t� t0) = y0 + f(t0; y0)(t� t0)
for t � t0 small. If we wish to approximate y(t) for a value of t far away from our initial
value t0, we use the above idea in several steps. We cut up the interval into n pieces of
length h (called the stepsize), and then set

y1 = y0 + f(t0; y0)h , t1 = t0 + h
y2 = y1 + f(t1; y1)h , t2 = t1 + h
y3 = y2 + f(t2; y2)h , t3 = t2 + h

and continue until we reach yn, which will be our approximation to y(t) = y(tn) . Each
step can be thought of as a mid-course correction, using information about the direction
�eld at each stage to determine which way the solution is tending.
Calculus teaches us that at each stage the error introduced is approximately proportional
to the square of h. So with a stepsize half as large, we will require twice as many steps,
but each introduces an error only about one-fourth as large, so overall we get an error only
half as large. This leads us to conclude that as the stepsize goes to 0, the error between
our approximate solution yn and y(tn) goes to 0.

A slightly di�erent technique is called backwards Euler, where we use the approximation
y(ti) � yi+1 + y0(ti+1)(ti � ti+1) = yi+1 + f(ti+1; yi+1)(�h)

and so we use the step
yi = yi+1 � f(ti+1; yi+1)h

This de�nes yi+1 implicitly in terms of yi ; if we can solve this equation (essentially,
by inverting the function on the right-hand side), we can then use this to determine a
(di�erent) yn from the initial value y0 . The analysis of how well this method does to
approximate the true value of y(t) is essentially the same as for (forward) Euler.
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